Big Data in Earth system science and progress towards a digital twin

[1]  Huanfeng Shen,et al.  Mechanism-learning coupling paradigms for parameter inversion and simulation in earth surface systems , 2023, Science China Earth Sciences.

[2]  G. Dax,et al.  Compression Supports Spatial Deep Learning , 2023, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  T. Lenton,et al.  Exceeding 1.5°C global warming could trigger multiple climate tipping points , 2022, Science.

[4]  M. Latif The roadmap of climate models , 2022, Nature Computational Science.

[5]  G. Beroza,et al.  Deep-learning seismology , 2022, Science.

[6]  Fa-Ju Chen,et al.  Measuring and evaluating SDG indicators with Big Earth Data. , 2022, Science bulletin.

[7]  Wenchong Tian,et al.  Combined Sewer Overflow and Flooding Mitigation Through a Reliable Real‐Time Control Based on Multi‐Reinforcement Learning and Model Predictive Control , 2022, Water Resources Research.

[8]  Brodie C. Pearson,et al.  The small scales of the ocean may hold the key to surprises , 2022, Nature Climate Change.

[9]  H. Tomita,et al.  Development of the Real‐Time 30‐s‐Update Big Data Assimilation System for Convective Rainfall Prediction With a Phased Array Weather Radar: Description and Preliminary Evaluation , 2022, Journal of Advances in Modeling Earth Systems.

[10]  Yufang Jin,et al.  Data-driven surrogate model with latent data assimilation: Application to wildfire forecasting , 2022, Journal of Computational Physics.

[11]  N. Hovakimyan,et al.  Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop Simulations , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[12]  C. Pain,et al.  Generalised Latent Assimilation in Heterogeneous Reduced Spaces with Machine Learning Surrogate Models , 2022, Journal of Scientific Computing.

[13]  Weihua An,et al.  Causal Network Analysis , 2022, The Annual review of sociology.

[14]  G. Carmichael,et al.  The future of Earth system prediction: Advances in model-data fusion , 2022, Science advances.

[15]  P. Gaspar,et al.  Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal , 2022, Agricultural Water Management.

[16]  S. Sepasgozar,et al.  City Digital Twin Concepts: A Vision for Community Participation , 2022, The 3rd Built Environment Research Forum.

[17]  S. Athey,et al.  Stable learning establishes some common ground between causal inference and machine learning , 2022, Nature Machine Intelligence.

[18]  N. Oza,et al.  NASA Earth Science Technology for Earth System Digital Twins (ESDT) , 2022 .

[19]  S. Ong,et al.  State-of-the-art survey on digital twin implementations , 2022, Advances in Manufacturing.

[20]  M. Cannon,et al.  Implementing an Open & FAIR data sharing policy—A case study in the earth and environmental sciences , 2022, Learn. Publ..

[21]  Julio Amador Díaz López,et al.  Data Learning: Integrating Data Assimilation and Machine Learning , 2021, J. Comput. Sci..

[22]  J. Brajard,et al.  Super-resolution data assimilation , 2021, Ocean Dynamics.

[23]  Massimo Bonavita,et al.  Machine Learning for Earth System Observation and Prediction , 2021, Bulletin of the American Meteorological Society.

[24]  L. Bruzzone,et al.  Self-Supervised Change Detection in Multiview Remote Sensing Images , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Chaehyeon Lee,et al.  Contrastive Self-Supervised Learning With Smoothed Representation for Remote Sensing , 2022, IEEE Geoscience and Remote Sensing Letters.

[26]  A. Wexler,et al.  Conservation laws in a neural network architecture: Enforcing the atom balance of a Julia-based photochemical model (v0.2.0) , 2021, Geoscientific Model Development.

[27]  E. Parson Geoengineering: Symmetric precaution. , 2021, Science.

[28]  D. Zheng,et al.  Information geography: The information revolution reshapes geography , 2021, Science China Earth Sciences.

[29]  J. Ruiz,et al.  Reduced non-Gaussianity by 30 s rapid update in convective-scale numerical weather prediction , 2021, Nonlinear Processes in Geophysics.

[30]  Alexander Lavin,et al.  Digital Twin Earth -- Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators , 2021, 2110.07100.

[31]  Y. C. E. Yang,et al.  Assessing Adaptive Irrigation Impacts on Water Scarcity in Nonstationary Environments—A Multi‐Agent Reinforcement Learning Approach , 2021, Water Resources Research.

[32]  W. Xiao,et al.  Origin, Accretion, and Reworking of Continents , 2021, Reviews of Geophysics.

[33]  Honglin He,et al.  Boosting geoscience data sharing in China , 2021, Nature Geoscience.

[34]  Pavel Ugwitz,et al.  A Comparison of Monoscopic and Stereoscopic 3D Visualizations: Effect on Spatial Planning in Digital Twins , 2021, Remote. Sens..

[35]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[36]  Alberto Arribas,et al.  Quantifying causal pathways of teleconnections , 2021, Bulletin of the American Meteorological Society.

[37]  D. Prelec,et al.  Human social sensing is an untapped resource for computational social science , 2021, Nature.

[38]  Jianwei Ma,et al.  Deep Learning for Geophysics: Current and Future Trends , 2021, Reviews of Geophysics.

[39]  Huadong Guo,et al.  Big Earth Data: a practice of sustainability science to achieve the Sustainable Development Goals. , 2021, Science bulletin.

[40]  Yuanlai Cui,et al.  A reinforcement learning approach to irrigation decision-making for rice using weather forecasts , 2021 .

[41]  Klaus Diepold,et al.  Multi-agent deep reinforcement learning: a survey , 2021, Artificial Intelligence Review.

[42]  Raia Hadsell,et al.  Skilful precipitation nowcasting using deep generative models of radar , 2021, Nature.

[43]  P. Cox,et al.  Overshooting tipping point thresholds in a changing climate , 2021, Nature.

[44]  A. Geer,et al.  Learning earth system models from observations: machine learning or data assimilation? , 2021, Philosophical Transactions of the Royal Society A.

[45]  Prabhat,et al.  Physics-informed machine learning: case studies for weather and climate modelling , 2021, Philosophical Transactions of the Royal Society A.

[46]  Q. Cheng,et al.  The Deep-Time Digital Earth program: data-driven discovery in geosciences , 2021, National science review.

[47]  Adrienne Raglin,et al.  Causal inference for time series analysis: problems, methods and evaluation , 2021, Knowledge and Information Systems.

[48]  Torsten Hoefler,et al.  The digital revolution of Earth-system science , 2021, Nature Computational Science.

[49]  Peter Bauer,et al.  A digital twin of Earth for the green transition , 2021, Nature Climate Change.

[50]  A. Petrov,et al.  Rethinking Arctic sustainable development agenda through indigenizing UN sustainable development goals , 2021, International Journal of Sustainable Development & World Ecology.

[51]  F. Radicchi,et al.  Detecting Climate Teleconnections With Granger Causality , 2020, Geophysical Research Letters.

[52]  Naoto Yokoya,et al.  More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[53]  J. Leinonen,et al.  Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields With a Generative Adversarial Network , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[54]  X. Jia,et al.  Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles , 2020, Trans. Data Sci..

[55]  Pierre Baldi,et al.  Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems. , 2019, Physical review letters.

[56]  A. Wills,et al.  Physics-informed machine learning , 2021, Nature Reviews Physics.

[57]  M. Jain,et al.  Unravelling the teleconnections between ENSO and dry/wet conditions over India using nonlinear Granger causality , 2021 .

[58]  Xinrun Wang,et al.  Efficient Reservoir Management through Deep Reinforcement Learning , 2020, ArXiv.

[59]  Javier G. P. Gamarra,et al.  The importance of sharing global forest data in a world of crises , 2020, Scientific Data.

[60]  Ji Zhao,et al.  WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF , 2020 .

[61]  S. E. Haupt,et al.  Outlook for Exploiting Artificial Intelligence in the Earth and Environmental Sciences , 2020, Bulletin of the American Meteorological Society.

[62]  Alexander Y. Sun,et al.  Optimal carbon storage reservoir management through deep reinforcement learning , 2020, Applied Energy.

[63]  Ian Goodfellow,et al.  Generative adversarial networks , 2020, Commun. ACM.

[64]  L. Dicks,et al.  Biofilm dynamics: linking in situ biofilm biomass and metabolic activity measurements in real-time under continuous flow conditions , 2020, NPJ biofilms and microbiomes.

[65]  C. Fletcher,et al.  Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada , 2020, Hydrology and Earth System Sciences.

[66]  Yu Liu,et al.  An Ensemble Learning Approach for Urban Land Use Mapping Based on Remote Sensing Imagery and Social Sensing Data , 2020, Remote. Sens..

[67]  Y. Sawada,et al.  Socio-hydrological data assimilation: analyzing human–flood interactions by model–data integration , 2020, Hydrology and Earth System Sciences.

[68]  P. Voosen Europe builds 'digital twin' of Earth to hone climate forecasts. , 2020, Science.

[69]  Casper Solheim Bojer,et al.  Kaggle forecasting competitions: An overlooked learning opportunity , 2020, ArXiv.

[70]  N. Zhou Intelligent Control of Agricultural Irrigation Based on Reinforcement Learning , 2020, Journal of Physics: Conference Series.

[71]  Jian Peng,et al.  When causal inference meets deep learning , 2020, Nature Machine Intelligence.

[72]  M. Sahimi,et al.  Machine learning in geo- and environmental sciences: From small to large scale , 2020, Advances in Water Resources.

[73]  Juanzhen Sun,et al.  Smartphone pressure data: quality control and impact on atmospheric analysis , 2020, Atmospheric Measurement Techniques.

[74]  Brian D. Davison,et al.  Applications of artificial intelligence for disaster management , 2020, Natural Hazards.

[75]  Barbara Unmüßig Geoengineering , 2020, Forschungsjournal Soziale Bewegungen.

[76]  M. Feng,et al.  Land cover mapping toward finer scales. , 2020, Science Bulletin.

[77]  Xin Li,et al.  Harmonizing models and observations: Data assimilation in Earth system science , 2020, Science China Earth Sciences.

[78]  Abhiram Mullapudi,et al.  Deep reinforcement learning for the real time control of stormwater systems , 2020 .

[79]  C. Hsieh,et al.  Causal effects of population dynamics and environmental changes on spatial variability of marine fishes , 2020, Nature Communications.

[80]  C. Lowry,et al.  Improving Hydrological Models With the Assimilation of Crowdsourced Data , 2020, Water Resources Research.

[81]  P. Nowack,et al.  Causal networks for climate model evaluation and constrained projections , 2020, Nature Communications.

[82]  J. Z. Kolter,et al.  Overfitting in adversarially robust deep learning , 2020, ICML.

[83]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[84]  Jing Luo,et al.  Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images , 2020 .

[85]  Omer San,et al.  Digital Twin: Values, Challenges and Enablers From a Modeling Perspective , 2019, IEEE Access.

[86]  I. Otto,et al.  Social tipping dynamics for stabilizing Earth’s climate by 2050 , 2020, Proceedings of the National Academy of Sciences.

[87]  Douglas H. Erwin,et al.  A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity , 2020, Science.

[88]  T. Lenton,et al.  The emergence and evolution of Earth System Science , 2020, Nature Reviews Earth & Environment.

[89]  Ali Ramadhan,et al.  Universal Differential Equations for Scientific Machine Learning , 2020, ArXiv.

[90]  Demis Hassabis,et al.  Mastering Atari, Go, chess and shogi by planning with a learned model , 2019, Nature.

[91]  Dongxiao Zhang,et al.  Deep Learning of Subsurface Flow via Theory-guided Neural Network , 2019, Journal of Hydrology.

[92]  Saeid Nahavandi,et al.  Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications , 2018, IEEE Transactions on Cybernetics.

[93]  Christopher O. Justice,et al.  No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework , 2019 .

[94]  Ghaleb Abdulla,et al.  Deep learning predictions of sand dune migration , 2019, ArXiv.

[95]  Markus Reichstein,et al.  Physics‐Constrained Machine Learning of Evapotranspiration , 2019, Geophysical Research Letters.

[96]  Daniela Fogli,et al.  A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications , 2019, IEEE Access.

[97]  Anuj Karpatne,et al.  Process‐Guided Deep Learning Predictions of Lake Water Temperature , 2019, Water Resources Research.

[98]  Yuanyuan Zha,et al.  A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation , 2019, Advances in Water Resources.

[99]  Shian-Jiann Lin,et al.  DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains , 2019, Progress in Earth and Planetary Science.

[100]  Melba M. Crawford,et al.  Deep learning based retrieval algorithm for Arctic sea ice concentration from AMSR2 passive microwave and MODIS optical data , 2019, Remote Sensing of Environment.

[101]  Wolfram Barfuss,et al.  Deep reinforcement learning in World-Earth system models to discover sustainable management strategies , 2019, Chaos.

[102]  Bernhard Schölkopf,et al.  Inferring causation from time series in Earth system sciences , 2019, Nature Communications.

[103]  Lei Ma,et al.  Deep learning in remote sensing applications: A meta-analysis and review , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[104]  Manzhu Yu,et al.  Big Earth data analytics: a survey , 2019, Big Earth Data.

[105]  He Zhang,et al.  Digital Twin in Industry: State-of-the-Art , 2019, IEEE Transactions on Industrial Informatics.

[106]  Maarten V. de Hoop,et al.  Machine learning for data-driven discovery in solid Earth geoscience , 2019, Science.

[107]  S. Mystakidis,et al.  Metaverse , 2019, Interference.

[108]  Judea Pearl,et al.  The seven tools of causal inference, with reflections on machine learning , 2019, Commun. ACM.

[109]  M H Barendrecht,et al.  The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model , 2019, Water resources research.

[110]  Prabhat,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[111]  Ning Zhang,et al.  Deep-learning-based seismic data interpolation: A preliminary result , 2019, GEOPHYSICS.

[112]  Dino Sejdinovic,et al.  Detecting and quantifying causal associations in large nonlinear time series datasets , 2017, Science Advances.

[113]  C. Folke,et al.  Anthropocene risk , 2019, Nature Sustainability.

[114]  Sebastian Scher,et al.  Toward Data‐Driven Weather and Climate Forecasting: Approximating a Simple General Circulation Model With Deep Learning , 2018, Geophysical Research Letters.

[115]  Peter Gerstoft,et al.  Machine Learning in Seismology: Turning Data into Insights , 2018, Seismological Research Letters.

[116]  A. Crane-Droesch Machine learning methods for crop yield prediction and climate change impact assessment in agriculture , 2018, Environmental Research Letters.

[117]  Matthew E. Taylor,et al.  A survey and critique of multiagent deep reinforcement learning , 2018, Autonomous Agents and Multi-Agent Systems.

[118]  O. Boucher,et al.  Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals , 2018, Nature Communications.

[119]  Zefeng Li,et al.  Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning , 2018, Geophysical Research Letters.

[120]  Lucy Marshall,et al.  Data‐Driven Model Uncertainty Estimation in Hydrologic Data Assimilation , 2018 .

[121]  Fei Tao,et al.  Digital twin-driven product design, manufacturing and service with big data , 2017, The International Journal of Advanced Manufacturing Technology.

[122]  Gary Marcus,et al.  Deep Learning: A Critical Appraisal , 2018, ArXiv.

[123]  Chung-Kang Peng,et al.  Causal decomposition in the mutual causation system , 2017, Nature Communications.

[124]  Chaopeng Shen,et al.  A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists , 2017, Water Resources Research.

[125]  G. Evensen,et al.  Data assimilation in the geosciences: An overview of methods, issues, and perspectives , 2017, WIREs Climate Change.

[126]  Bernhard Schölkopf,et al.  Learning causality and causality-related learning: some recent progress. , 2018, National science review.

[127]  Zhi-Hua Zhou,et al.  A brief introduction to weakly supervised learning , 2018 .

[128]  Huadong Guo,et al.  Big Earth data: A new frontier in Earth and information sciences , 2017 .

[129]  Joan Bruna,et al.  Mathematics of Deep Learning , 2017, ArXiv.

[130]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[131]  Anuj Karpatne,et al.  Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling , 2017, ArXiv.

[132]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[133]  G. Salvucci,et al.  Confounding factors in determining causal soil moisture‐precipitation feedback , 2017 .

[134]  R. DeFries,et al.  Ecosystem management as a wicked problem , 2017, Science.

[135]  Jun Li,et al.  Social Media: New Perspectives to Improve Remote Sensing for Emergency Response , 2017, Proceedings of the IEEE.

[136]  Hao Jiang,et al.  Big Earth Data: a new challenge and opportunity for Digital Earth’s development , 2017, Int. J. Digit. Earth.

[137]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[138]  A. P. Siebesma,et al.  Climate goals and computing the future of clouds , 2017 .

[139]  B. Fu,et al.  Bidirectional coupling between the Earth and human systems is essential for modeling sustainability , 2016 .

[140]  Willem Waegeman,et al.  A non-linear Granger-causality framework to investigate climate–vegetation dynamics , 2016 .

[141]  Tomoo Ushio,et al.  “Big Data Assimilation” Revolutionizing Severe Weather Prediction , 2016 .

[142]  Reiner Grundmann,et al.  Climate change as a wicked social problem , 2016 .

[143]  Elias Bareinboim,et al.  Causal inference and the data-fusion problem , 2016, Proceedings of the National Academy of Sciences.

[144]  Alan L. Porter,et al.  How Does National Scientific Funding Support Emerging Interdisciplinary Research: A Comparison Study of Big Data Research in the US and China , 2016, PloS one.

[145]  Jonathan F. Donges,et al.  Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation , 2016 .

[146]  Andrew J. Evans,et al.  Dynamic calibration of agent-based models using data assimilation , 2016, Royal Society Open Science.

[147]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[148]  J. Pearl,et al.  Causal Counterfactual Theory for the Attribution of Weather and Climate-Related Events , 2016 .

[149]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[150]  Amir Hossein Alavi,et al.  Machine learning in geosciences and remote sensing , 2016 .

[151]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[152]  Jürgen Kurths,et al.  Identifying causal gateways and mediators in complex spatio-temporal systems , 2015, Nature Communications.

[153]  Martin Krzywinski,et al.  Points of Significance: Association, correlation and causation , 2015, Nature Methods.

[154]  Jack J. Dongarra,et al.  Exascale computing and big data , 2015, Commun. ACM.

[155]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[156]  Chaogui Kang,et al.  Social Sensing: A New Approach to Understanding Our Socioeconomic Environments , 2015 .

[157]  Xin Li,et al.  Integrated research methods in watershed science , 2015, Science China Earth Sciences.

[158]  M. Scheffer,et al.  Causal feedbacks in climate change , 2015 .

[159]  M. Maslin,et al.  Defining the Anthropocene , 2015, Nature.

[160]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[161]  Shunlin Liang,et al.  Observational evidence for impacts of vegetation change on local surface climate over northern China using the Granger causality test , 2015 .

[162]  C. Mass,et al.  Surface Pressure Observations from Smartphones: A Potential Revolution for High-Resolution Weather Prediction? , 2014 .

[163]  Toshiyuki Imamura,et al.  The 10,240‐member ensemble Kalman filtering with an intermediate AGCM , 2014 .

[164]  Alex Pentland,et al.  Sensing, Understanding, and Shaping Social Behavior , 2014, IEEE Transactions on Computational Social Systems.

[165]  R. Kitchin,et al.  Big Data, new epistemologies and paradigm shifts , 2014, Big Data Soc..

[166]  Han Liu,et al.  Challenges of Big Data Analysis. , 2013, National science review.

[167]  O. Korup,et al.  Landslide prediction from machine learning , 2014 .

[168]  Mark Graham,et al.  Geography and the future of big data, big data and the future of geography , 2013 .

[169]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[170]  George Sugihara,et al.  Detecting Causality in Complex Ecosystems , 2012, Science.

[171]  Li An,et al.  Modeling human decisions in coupled human and natural systems: Review of agent-based models , 2012 .

[172]  Mark Gahegan,et al.  Geospatial Cyberinfrastructure: Past, present and future , 2010, Comput. Environ. Urban Syst..

[173]  Tony Hey,et al.  The Fourth Paradigm: Data-Intensive Scientific Discovery , 2009 .

[174]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[175]  Elinor Ostrom,et al.  Complexity of Coupled Human and Natural Systems , 2007, Science.

[176]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[177]  P. Crutzen Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? , 2006 .

[178]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[179]  Edward N. Lorenz,et al.  Designing Chaotic Models , 2005 .

[180]  D. Rubin Causal Inference Using Potential Outcomes , 2005 .

[181]  Robert K. Kaufmann,et al.  Investigating soil moisture feedbacks on precipitation with tests of Granger causality , 2002 .

[182]  David William Keith Geoengineering , 2021, Nature.

[183]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[184]  H. J. Schellnhuber,et al.  ‘Earth system’ analysis and the second Copernican revolution , 1999, Nature.

[185]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[186]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[187]  J. Aldrich Correlations Genuine and Spurious in Pearson and Yule , 1995 .

[188]  J. Wallace,et al.  Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter , 1981 .

[189]  H. Rittel,et al.  Dilemmas in a general theory of planning , 1973 .