Energy scaling of Kerr-lens mode-locked thin-disk oscillators.

Geometric scaling of a Kerr-lens mode-locked Yb:YAG thin-disk oscillator yields femtosecond pulses with an average output power of 270 W. The scaled system delivers femtosecond (210-330 fs) pulses with a peak power of 38 MW. These values of average and peak power surpass the performance of any previously reported femtosecond laser oscillator operated in atmospheric air.

[1]  Ferenc Krausz,et al.  Approaching the microjoule frontier with femtosecond laser oscillators , 2005 .

[2]  K. Midorikawa,et al.  Femtosecond laser pulses in a Kerr lens mode-locked thin-disk ring oscillator with an intra-cavity peak power beyond 100 MW , 2014 .

[3]  T. Eidam,et al.  Megawatt-scale average-power ultrashort pulses in an enhancement cavity. , 2014, Optics letters.

[4]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[5]  J G Fujimoto,et al.  Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. , 2001, Optics letters.

[6]  Matthias Golling,et al.  Pulse energy scaling to 5 μJ from a femtosecond thin disk laser , 2006 .

[7]  V. Magni,et al.  Multielement stable resonators containing a variable lens , 1987 .

[8]  V. L. Kalashnikov,et al.  High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. , 2011, Optics letters.

[9]  Thomas Graf,et al.  1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses. , 2013, Optics letters.

[10]  Matthias Golling,et al.  Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power. , 2014, Optics letters.

[11]  Matthias Golling,et al.  SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation. , 2013, Optics letters.

[12]  F. Krausz,et al.  Ultrabroadband femtosecond lasers , 1994 .

[13]  Alexander Apolonski,et al.  Energy scalability of mode-locked oscillators: a completely analytical approach to analysis. , 2010, Optics express.

[14]  Ivo Zawischa,et al.  Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion. , 2012, Optics express.

[15]  R. Szipöcs,et al.  Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. , 1995, Optics letters.

[16]  F. Krausz,et al.  Continuous-wave mode-locked Ti:sapphire laser focusable to 5 x 10(13) W/cm(2). , 1998, Optics letters.

[17]  Ferenc Krausz,et al.  Femtosecond solid-state lasers , 1992 .

[18]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[19]  Sandro De Silvestri,et al.  Closed form gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers , 1993 .

[20]  T. Südmeyer,et al.  Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. , 2008, Optics express.

[21]  Marcel Schultze,et al.  12 MW peak power from a two-crystal Yb:KYW chirped-pulse oscillator with cavity-dumping. , 2010, Optics express.

[22]  G. Cerullo,et al.  Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers. , 1994, Optics letters.

[23]  M. Larotonda Saturation of Kerr-lens mode locking and the self-amplitude modulation coefficient , 2003 .

[24]  Ursula Keller,et al.  Mode-locking with slow and fast saturable absorbers-what's the difference? , 1998 .

[25]  Vladimir L. Kalashnikov,et al.  Chirped-Pulse Oscillators: Route to the Energy-Scalable Femtosecond Pulses , 2012 .

[26]  H. Hoffmann,et al.  Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. , 2010, Optics letters.

[27]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[28]  Matthias Golling,et al.  Cutting-Edge High-Power Ultrafast Thin Disk Oscillators , 2013 .

[29]  Tino Eidam,et al.  Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.

[30]  J Brons,et al.  High-dispersive mirrors for high power applications. , 2012, Optics express.

[31]  Sascha Weiler,et al.  Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. , 2008, Optics express.

[32]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  James G. Fujimoto,et al.  Dispersion-managed mode locking , 1999 .

[34]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[35]  E. Wintner,et al.  Hard-aperture Kerr-lens mode locking , 1993 .

[36]  Thomas Udem,et al.  Few-cycle Laser Pulse Generation and its Applications , 2004 .

[37]  S. Silvestri,et al.  Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking , 1995 .

[38]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[39]  T. Brabec,et al.  Mode locking in solitary lasers. , 1991, Optics letters.

[40]  Matthias Golling,et al.  275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. , 2012, Optics express.