A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales

[1]  Elizabeth M. Middleton,et al.  Regional mapping of gross light-use efficiency using MODIS spectral indices , 2008 .

[2]  Xavier Briottet,et al.  Monitoring land surface processes with thermal infrared data : Calibration of SVAT parameters based on the optimisation of diurnal surface temperature cycling features , 2008 .

[3]  S. Running,et al.  Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data , 2008 .

[4]  N. Coops,et al.  Multi-Angle Remote Sensing of Forest Light Use Efficiency , 2007 .

[5]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology , 2007 .

[6]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[7]  Pamela L. Nagler,et al.  Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices , 2007 .

[8]  Catherine Ottlé,et al.  An improved SVAT model calibration strategy based on the optimisation of surface temperature temporal dynamics , 2007 .

[9]  Martha C. Anderson,et al.  Upscaling flux observations from local to continental scales using thermal remote sensing , 2007 .

[10]  William P. Kustas,et al.  Effect of remote sensing spatial resolution on interpreting tower-based flux observations , 2006 .

[11]  Thomas J. Jackson,et al.  Comparing the utility of microwave and thermal remote-sensing constraints in two-source energy balance modeling over an agricultural landscape , 2006 .

[12]  William P. Kustas,et al.  Using a remote sensing field experiment to investigate flux-footprint relations and flux sampling distributions for tower and aircraft-based observations , 2006 .

[13]  William P. Kustas,et al.  Tower and Aircraft Eddy Covariance Measurements of Water Vapor, Energy, and Carbon Dioxide Fluxes during SMACEX , 2005 .

[14]  Thomas J. Jackson,et al.  Utility of Remote Sensing–Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions , 2005 .

[15]  Tiit Kutser,et al.  Mapping lake CDOM by satellite remote sensing , 2005 .

[16]  T. Meyers,et al.  An assessment of storage terms in the surface energy balance of maize and soybean , 2004 .

[17]  Dale A. Quattrochi,et al.  Thermal Remote Sensing in Land Surface Processing , 2004 .

[18]  Martha C. Anderson,et al.  A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales , 2004 .

[19]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[20]  Martha C. Anderson,et al.  Estimating land surface energy budgets from space: Review and current efforts at the University of Wisconsin-Madison and USDA-ARS , 2004 .

[21]  T. Jacksona,et al.  Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa , 2004 .

[22]  Martha C. Anderson,et al.  Upscaling and Downscaling—A Regional View of the Soil–Plant–Atmosphere Continuum , 2003 .

[23]  Pang-Ning Tan,et al.  Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998 , 2003 .

[24]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[25]  Ray Leuning,et al.  A coupled model of stomatal conductance, photosynthesis and transpiration , 2003 .

[26]  T. Schmugge,et al.  Surface energy fluxes over El Reno, Oklahoma, using high‐resolution remotely sensed data , 2003 .

[27]  Soo-Hyung Kim,et al.  A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). , 2003, Annals of botany.

[28]  Lifeng Luo,et al.  An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS) , 2003 .

[29]  M. Moran,et al.  Thermal infrared measurement as an indicator of plant ecosystem health , 2003 .

[30]  Jozsef Szilagyi,et al.  Vegetation Indices to Aid Areal Evapotranspiration Estimations , 2002 .

[31]  Jielun Sun,et al.  Spatial variations of surface moisture flux from aircraft data , 2001 .

[32]  Dennis D. Baldocchi,et al.  Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales , 2001 .

[33]  William P. Kustas,et al.  A coupled model of land surface CO2 and energy fluxes using remote sensing data , 2001 .

[34]  T. Schmugge,et al.  Discrimination of Senescent Vegetation Using Thermal Emissivity Contrast , 2000 .

[35]  J. Norman,et al.  A Two-Source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces , 2000 .

[36]  Martha C. Anderson,et al.  An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency , 2000 .

[37]  S. T. Gower,et al.  Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems , 1999 .

[38]  Thomas J. Jackson,et al.  Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment , 1999, IEEE Trans. Geosci. Remote. Sens..

[39]  Jean-Pierre Wigneron,et al.  Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models , 1999 .

[40]  William P. Kustas,et al.  Reply to comments about the basic equations of dual-source vegetation–atmosphere transfer models , 1999 .

[41]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[42]  S. Goetz,et al.  Modelling Terrestrial Carbon Exchange and Storage: Evidence and Implications of Functional Convergence in Light-use Efficiency , 1999 .

[43]  S. Long,et al.  Free-air Carbon Dioxide Enrichment (FACE) in Global Change Research: A Review , 1999 .

[44]  G. Collatz,et al.  Parameterization and testing of a coupled photosynthesis-stomatal conductance model for boreal trees. , 1998, Tree physiology.

[45]  K. Mitchell,et al.  Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data , 1997 .

[46]  Preliminary Report of NRC Twin Otter Operations in the 1997 Southern Great Plains Experiment , 1997 .

[47]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[48]  B. Itier,et al.  Operational limits to the Priestley-Taylor formula , 1996, Irrigation Science.

[49]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[50]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[51]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[52]  E. Schulze,et al.  Leaf nitrogen, photosynthesis, conductance and transpiration : scaling from leaves to canopies , 1995 .

[53]  T. Carlson,et al.  Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models , 1995 .

[54]  R. Leuning A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants , 1995 .

[55]  Nadine Gobron,et al.  Optical remote sensing of vegetation: Modeling, caveats, and algorithms , 1995 .

[56]  C. Field,et al.  Scaling physiological processes: leaf to globe. , 1995 .

[57]  N. U. Ahmed,et al.  Relations between evaporation coefficients and vegetation indices studied by model simulations , 1994 .

[58]  In defense of radiation use efficiency: a response to Demetriades-Shah et al. (1992) , 1994 .

[59]  David I. Stannard,et al.  Comparison of Penman‐Monteith, Shuttleworth‐Wallace, and Modified Priestley‐Taylor Evapotranspiration Models for wildland vegetation in semiarid rangeland , 1993 .

[60]  R. Avissar Observations of leaf stomatal conductance at the canopy scale: An atmospheric modeling perspective , 1993 .

[61]  S. Running,et al.  8 – Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models , 1993 .

[62]  J. M. Norman,et al.  Soil surface CO2 fluxes and the carbon budget of a grassland , 1992 .

[63]  Adjustment of footprint correction for airborne flux mapping over the FIFE site , 1992 .

[64]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[65]  J. Norman,et al.  Instrument for Indirect Measurement of Canopy Architecture , 1991 .

[66]  K. G. McNaughton,et al.  Effects of spatial scale on stomatal control of transpiration , 1991 .

[67]  Monique Y. Leclerc,et al.  Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation , 1990 .

[68]  Ray Leuning,et al.  Modelling Stomatal Behaviour and and Photosynthesis of Eucalyptus grandis , 1990 .

[69]  I. E. Woodrow,et al.  A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions , 1987 .

[70]  Arana,et al.  Progress in Photosynthesis Research , 1987, Springer Netherlands.

[71]  Piers J. Sellers,et al.  The first International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment - FIFE , 1992 .

[72]  K. McNaughton,et al.  A mixed-layer model for regional evaporation , 1986 .

[73]  R. Munns,et al.  Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves , 1986 .

[74]  R. G. Smith,et al.  Relationship between wheat yield and foliage temperature: theory and its application to infrared measurements , 1985 .

[75]  I. R. Cowan,et al.  Stomatal conductance correlates with photosynthetic capacity , 1979, Nature.

[76]  B. Barfield,et al.  Modification of the aerial environment of plants , 1979 .

[77]  J. Monteith Climate and the efficiency of crop production in Britain , 1977 .

[78]  C. B. Tanner,et al.  Estimating Evaporation and Transpiration from a Row Crop during Incomplete Cover1 , 1976 .

[79]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[80]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[81]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[82]  John L. Monteith,et al.  The Photosynthesis and Transpiration of Crops , 1966, Experimental Agriculture.