AgentVis: Visual Analysis of Agent Behavior With Hierarchical Glyphs

Glyphs representing complex behavior provide a useful and common means of visualizing multivariate data. However, due to their complex shape, overlapping and occlusion of glyphs is a common and prominent limitation. This limits the number of discreet data tuples that can be displayed in a given image. Using a real-world application, glyphs are used to depict agent behavior in a call center. However, many call centers feature thousands of agents. A standard approach representing thousands of agents with glyphs does not scale. To accommodate the visualization incorporating thousands of glyphs we develop clustering of overlapping glyphs into a single parent glyph. This hierarchical glyph represents the mean value of all child agent glyphs, removing overlap and reducing visual clutter. Multi-variate clustering techniques are explored and developed in collaboration with domain experts in the call center industry. We implement dynamic control of glyph clusters according to zoom level and customized distance metrics, to utilize image space with reduced overplotting and cluttering. We demonstrate our technique with examples and a usage scenario using real-world call-center data to visualize thousands of call center agents, revealing insight into their behavior and reporting feedback from expert call-center analysts.

[1]  Robert S. Laramee,et al.  Smart Brushing for Parallel Coordinates , 2019, IEEE Transactions on Visualization and Computer Graphics.

[2]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[3]  E. Anderson A SEMIGRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX PROBLEMS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Eva Hornecker,et al.  The Elicitation Interview Technique: Capturing People's Experiences of Data Representations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[5]  Robert S. Laramee,et al.  Time-oriented Cartographic Treemaps for Visualization of Public Healthcare Data , 2017, CGVC.

[6]  Avishai Mandelbaum,et al.  Statistical Analysis of a Telephone Call Center , 2005 .

[7]  Michael Correll,et al.  Ross-Chernoff Glyphs Or: How Do We Kill Bad Ideas in Visualization? , 2018, CHI Extended Abstracts.

[8]  Alexandru Telea,et al.  Data visualization - principles and practice , 2007 .

[9]  Robert S. Laramee,et al.  Survey of Surveys (SoS) ‐ Mapping The Landscape of Survey Papers in Information Visualization , 2017, Comput. Graph. Forum.

[10]  David H. Laidlaw,et al.  Colorgorical: Creating discriminable and preferable color palettes for information visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[11]  Martin Kleinsteuber,et al.  Glyphboard: Visual Exploration of High-Dimensional Data Combining Glyphs with Dimensionality Reduction , 2020, IEEE Transactions on Visualization and Computer Graphics.

[12]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[13]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[14]  Robert S. Laramee,et al.  Feature-Rich, GPU-Assisted Scatterplots for Millions of Call Events , 2019, Comput..

[15]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[16]  Lloyd A. Treinish Task-Specific Visualization Design , 1999, IEEE Computer Graphics and Applications.

[17]  Matthew O. Ward,et al.  A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization , 2002, Inf. Vis..

[18]  Steve McConnell,et al.  Rapid Development: Taming Wild Software Schedules , 1996 .

[19]  Harri Siirtola Direct manipulation of parallel coordinates , 2000, CHI Extended Abstracts.

[20]  Zeynep Akşin,et al.  The Modern Call Center: A Multi‐Disciplinary Perspective on Operations Management Research , 2007 .

[21]  Noritaka Osawa Application of jigsaw-puzzle-like 3D glyph to visualizing grammatical constraints , 2005, 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05).

[22]  Min Chen,et al.  Glyph sorting: Interactive visualization for multi-dimensional data , 2013, Inf. Vis..

[23]  Kenneth Moreland,et al.  Why We Use Bad Color Maps and What You Can Do About It , 2016, HVEI.

[24]  Robert S. Laramee,et al.  Interactive Analytical Treemaps for Visualisation of Call Centre Data , 2016, STAG.

[25]  Chris Bakal,et al.  Visualizing cellular imaging data using PhenoPlot , 2015, Nature Communications.

[26]  Matthew O. Ward,et al.  Interactive hierarchical displays: a general framework for visualization and exploration of large multivariate data sets , 2003, Comput. Graph..

[27]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[28]  Robert S. Laramee,et al.  Vector Glyphs for Surfaces: A Fast and Simple Glyph Placement Algorithm for Adaptive Resolution Meshes , 2008, VMV.

[29]  J. V. van Wijk,et al.  A probe for local flow field visualization , 1993, Proceedings Visualization '93.

[30]  Robert S. Laramee,et al.  RiverState: A Visual Metaphor Representing Millions of Time-Oriented State Transitions , 2018, CGVC.

[31]  Tobias Schreck,et al.  Leaf Glyphs: Story Telling and Data Analysis Using Environmental Data Glyph Metaphors , 2015, VISIGRAPP.

[32]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[33]  Min Chen,et al.  Knowledge-Assisted Ranking: A Visual Analytic Application for Sports Event Data , 2016, IEEE Computer Graphics and Applications.

[34]  Noritaka Osawa Visualization of Inheritance Relationships Using Glyphs , 2002 .

[35]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[36]  P. Embrechts,et al.  Variations of Andrews' plots , 1991 .

[37]  Hans-Peter Kriegel,et al.  Visualization Techniques for Mining Large Databases: A Comparison , 1996, IEEE Trans. Knowl. Data Eng..

[38]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[39]  P. Cortez,et al.  A data mining approach to predict forest fires using meteorological data , 2007 .

[40]  Tamara Munzner,et al.  Design Study Methodology: Reflections from the Trenches and the Stacks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[41]  Timo Ropinski,et al.  Surface Glyphs for Visualizing Multimodal Volume Data , 2007, VMV.

[42]  Pierre Dragicevic,et al.  Conceptual and Methodological Issues in Evaluating Multidimensional Visualizations for Decision Support , 2018, IEEE Transactions on Visualization and Computer Graphics.

[43]  M. Berg Tableau , 2020, Nord'.

[44]  Robert S. Laramee,et al.  GPU-Assisted Scatterplots for Millions of Call Events. , 2018 .

[45]  Klaus Mueller,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Illustrative Parallel Coordinates , 2022 .

[46]  Matthew O. Ward,et al.  A visualization tool for exploratory analysis of cyclic multivariate data , 2000 .

[47]  Robert S. Laramee,et al.  A Survey of Information Visualization Books , 2019, Comput. Graph. Forum.

[48]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[49]  Timo Ropinski,et al.  Glyph-Based SPECT Visualization for the Diagnosis of Coronary Artery Disease , 2008, IEEE Transactions on Visualization and Computer Graphics.

[50]  Michael Stonebraker,et al.  Constant density visualizations of non-uniform distributions of data , 1998, UIST '98.

[51]  Daniel Weiskopf,et al.  Evaluation of a Bundling Technique for Parallel Coordinates , 2011, GRAPP/IVAPP.

[52]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[53]  Andreas Holzinger,et al.  Analysis of biomedical data with multilevel glyphs , 2014, BMC Bioinformatics.

[54]  Tamara Munzner,et al.  Steerable, Progressive Multidimensional Scaling , 2004, IEEE Symposium on Information Visualization.

[55]  Anastasia Bezerianos,et al.  A Systematic Review of Experimental Studies on Data Glyphs , 2017, IEEE Transactions on Visualization and Computer Graphics.

[56]  Sung-Hee Kim,et al.  VLAT: Development of a Visualization Literacy Assessment Test , 2017, IEEE Transactions on Visualization and Computer Graphics.

[57]  Timo Ropinski,et al.  Survey of glyph-based visualization techniques for spatial multivariate medical data , 2011, Comput. Graph..

[58]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.