Histone Deacetylase Inhibitor Romidepsin Has Differential Activity in Core Binding Factor Acute Myeloid Leukemia

Purpose: Recruitment of histone deacetylases (HDAC) is a mechanism of transcriptional repression implicated in the differentiation block in acute myeloid leukemia (AML). We hypothesized that the HDAC inhibitor romidepsin could cause transcriptional derepression, up-regulation of specific target genes in AML, and differentiation of the leukemic clone. The primary objectives of the study were to evaluate the safety and efficacy of romidepsin in advanced AML. Experimental Design: Twenty patients were stratified into cohort A or B based on the absence or presence of chromosomal abnormalities known to recruit HDACs, including those involving core binding factor (CBF). Romidepsin was administered i.v. at 13 mg/m2/d on days 1, 8, and 15 of a 28-day cycle. Pharmacodynamic endpoints were evaluated at serial time points. Results: Common adverse effects noted were grade 1 to 2 nausea, anorexia, and fatigue. No objective evidence of antileukemic activity was seen in cohort A. In cohort B, although there were no clinical responses by standard criteria, antileukemic activity was observed in 5 of 7 patients. Two patients had clearance of bone marrow blasts and 3 patients had a >50% decrease in bone marrow blasts. Furthermore, in cohort B, at 24 h, there was a significant increase in MDR1 (P = 0.005), p15 (P = 0.01), and p14 (P < 0.0001) expression. In cohort A, although there was a trend toward up-regulation of MDR1, p15, and p14 expression, these changes were not statistically significant. Conclusion: Romidepsin has differential antileukemic and molecular activity in CBF AML. Development of this agent in CBF AML should focus on combinations that target related mechanisms of gene silencing such as DNA methylation.

[1]  P. Pandolfi,et al.  Tolerability, Pharmacodynamics, and Pharmacokinetics Studies of Depsipeptide (Romidepsin) in Patients with Acute Myelogenous Leukemia or Advanced Myelodysplastic Syndromes , 2008, Clinical Cancer Research.

[2]  G. Rosner,et al.  Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. , 2008, Blood.

[3]  Jorge Cortes,et al.  Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. , 2007, Blood.

[4]  M. Grever,et al.  Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  P. Paschka,et al.  Targeting AML1/ETO-Histone Deacetylase Repressor Complex: A Novel Mechanism for Valproic Acid-Mediated Gene Expression and Cellular Differentiation in AML1/ETO-Positive Acute Myeloid Leukemia Cells , 2007, Journal of Pharmacology and Experimental Therapeutics.

[6]  E. Sausville,et al.  Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. , 2007, Blood.

[7]  S. Hiebert,et al.  Histone deacetylase inhibitors induce the degradation of the t(8;21) fusion oncoprotein , 2007, Oncogene.

[8]  Michael Rytting,et al.  Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. , 2006, Blood.

[9]  M. Grever,et al.  Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. , 2006, Cancer research.

[10]  C. Bloomfield,et al.  Quantitative real-time RT-PCR monitoring of BCR-ABL in chronic myelogenous leukemia shows lack of agreement in blood and bone marrow samples. , 2006, International journal of oncology.

[11]  T. Fojo,et al.  Increased MDR1 Expression in Normal and Malignant Peripheral Blood Mononuclear Cells Obtained from Patients Receiving Depsipeptide (FR901228, FK228, NSC630176) , 2006, Clinical Cancer Research.

[12]  V. Santini,et al.  Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts , 2005, Annals of Hematology.

[13]  C. Bloomfield,et al.  Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  M. Grever,et al.  Chemoresistance to Depsipeptide FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-Ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithia-5,8,20,23-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,22-pentanone] Is Mediated by Reversible MDR1 Induction in Human Cancer Cell Lines , 2005, Journal of Pharmacology and Experimental Therapeutics.

[15]  J. Byrd,et al.  Efflux of Depsipeptide FK228 (FR901228, NSC-630176) Is Mediated by P-Glycoprotein and Multidrug Resistance-Associated Protein 1 , 2005, Journal of Pharmacology and Experimental Therapeutics.

[16]  J. Byrd,et al.  Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. , 2005, Cancer research.

[17]  M. Grever,et al.  A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. , 2004, Blood.

[18]  C. Bloomfield,et al.  Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  V. Santini,et al.  Butyrates, as a single drug, induce histone acetylation and granulocytic maturation: possible selectivity on core binding factor-acute myeloid leukemia blasts. , 2003, Cancer research.

[20]  A. Ganser,et al.  Aberrant methylation and impaired expression of the p15INK4b cell cycle regulatory gene in chronic myelomonocytic leukemia (CMML) , 2003, Leukemia.

[21]  P. Hokland,et al.  Validation and clinical implication of a quantitative real‐time PCR determination of MDR1 gene expression: comparison with semi‐quantitative PCR in 101 patients with acute myeloid leukemia , 2003, European journal of haematology.

[22]  M. Grever,et al.  Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells , 2003, Leukemia.

[23]  P. Pandolfi,et al.  The t(8;21) fusion protein, AML1–ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia , 2002, Nature Medicine.

[24]  S. Bates,et al.  Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[25]  H. Wang,et al.  Differential modulation of signaling pathways and apoptosis of ras-transformed 10T1/2 cells by the depsipeptide FR901228. , 2002, The Journal of pharmacology and experimental therapeutics.

[26]  Ping Zhu,et al.  Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells , 2001, The EMBO journal.

[27]  S. Alkan,et al.  Histone deacetylase inhibitors induce caspase‐dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17) , 2001, British journal of haematology.

[28]  S. Hiebert,et al.  Role of co-repressors in transcriptional repression mediated by the t(8;21), t(16;21), t(12;21), and inv(16) fusion proteins , 2001, Current opinion in hematology.

[29]  E. Sausville,et al.  P21-dependent G 1 arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228 , 2000, British Journal of Cancer.

[30]  S. Hiebert,et al.  The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Johnson M Liu,et al.  Chromatin remodeling and leukemia: new therapeutic paradigms. , 1999, Blood.

[32]  Y. Saunthararajah,et al.  Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. , 1999, Cancer research.

[33]  T. Hoshino,et al.  ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J. Schuetz,et al.  The MYND Motif Is Required for Repression of Basal Transcription from the Multidrug Resistance 1 Promoter by the t(8;21) Fusion Protein , 1998, Molecular and Cellular Biology.

[35]  M. Yoshida,et al.  FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. , 1998, Experimental cell research.

[36]  D. Housman,et al.  MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Y. Hayashi,et al.  The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. , 1997, Blood.

[38]  C. Disteche,et al.  The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB–binding protein , 1996, Nature Genetics.

[39]  M. Grever,et al.  Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. , 1994, Molecular pharmacology.

[40]  M. Okuhara,et al.  Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells. , 1994, Bioscience, biotechnology, and biochemistry.

[41]  M. Okuhara,et al.  FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. , 1994, The Journal of antibiotics.

[42]  C. Steidl,et al.  The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all‐trans retinoic acid in patients with acute myeloid leukemia , 2006, Cancer.

[43]  P G Pelicci,et al.  Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. , 2001, Cancer research.

[44]  J. Herman,et al.  Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer , 1999, Nature Genetics.