Massive MIMO for mmWave systems

The large bandwidths available at the millimeter wave (mmWave) carrier frequencies (e.g., 30-100 GHz) have sparked significant interest in developing cellular systems in those bands to meet the ever-increasing demand for high data rates. Large-scale antenna arrays with tens or hundreds of antennas are envisioned to be a prerequisite for operating in the mmWave bands due to the poor path loss conditions in those bands. Previous studies for 72GHz carrier frequencies have shown how extremely high data rates can be achieved in ultra-dense small cell deployments through simple single-user MIMO techniques mainly by virtue of the high system bandwidth (on the order of 1-2GHz). In this paper, we extend the prior work on single-user MIMO (SU-MIMO) for mmWave bands and examine the question of whether Multi-User MIMO (MU-MIMO) is a useful approach for mmWave bands. We show that there are definite cases where MU-MIMO can provide significant system capacity gains over SU-MIMO in the mmWave bands, which is in contrast to the expectation that the poor path loss conditions necessitate simple high gain beamforming techniques. We show that in many cases, a large-scale array provides sufficient SINR gain that can enable further gains from multi-user spatial multiplexing. We show how those gains depend on a variety of factors such as the user density and the transmission strategy.

[1]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[2]  Theodore S. Rappaport,et al.  Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks , 2014, IEEE Journal on Selected Areas in Communications.

[3]  Martin Haardt,et al.  Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels , 2004, IEEE Transactions on Signal Processing.

[4]  Theodore S. Rappaport,et al.  3D mmWave Channel Model Proposal , 2014, 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall).

[5]  Frederick W. Vook,et al.  System level modeling and performance of an outdoor mmWave local area access system , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[6]  Frederick W. Vook,et al.  Method for obtaining full channel state information for RF beamforming , 2014, 2014 IEEE Global Communications Conference.

[7]  Theodore S. Rappaport,et al.  Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges , 2014, Proceedings of the IEEE.

[8]  Frederick W. Vook,et al.  MIMO and beamforming solutions for 5G technology , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[9]  Frederick W. Vook,et al.  Moving Towards Mmwave-Based Beyond-4G (B-4G) Technology , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).