Quantum Turbo Decoding for Quantum Channels Exhibiting Memory

Inspired by the success of classical turbo codes, quantum turbo codes (QTCs) have also been conceived for near-hashing-bound transmission of quantum information over memoryless quantum channels. However, in real physical situations, the memoryless channel assumption may not be well justified, since the channel often exhibits memory of previous error events. Here, we investigate the performance of QTCs over depolarizing channels exhibiting memory and we show that they suffer from a performance degradation at low depolarizing probability values. In order to circumvent the performance degradation issue, we conceive a new coding scheme termed quantum turbo coding scheme exploiting error-correlation (QTC-EEC) that is capable of utilizing the error-correlation while performing the iterative decoding at the receiver. The proposed QTC-EEC can achieve convergence threshold at a higher depolarizing probability for channels with a higher value of correlation parameter and achieve performance near to the capacity. Finally, we propose a joint decoding and estimation scheme for our QTC-EEC relying on the correlation estimation (QTC-EEC-E) designed for more realistic quantum systems with unknown correlation parameter. Simulation results reveal that the proposed QTC-EEC-E can achieve the same performance as that of the ideal system of known correlation parameter and hence demonstrate the accurate estimation of the proposed QTC-EEC-E.

[1]  K. Kraus General state changes in quantum theory , 1971 .

[2]  David Daems Entanglement-enhanced transmission of classical information in Pauli channels with memory: Exact solution , 2007 .

[3]  Fady Alajaji,et al.  Joint source-channel turbo coding for binary Markov sources , 2006, IEEE Transactions on Wireless Communications.

[4]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[5]  Konrad Banaszek,et al.  Exploiting entanglement in communication channels with correlated noise (9 pages) , 2003, quant-ph/0309148.

[6]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[7]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[8]  Giuliano Benenti,et al.  Enhancement of transmission rates in quantum memory channels with damping. , 2009, Physical review letters.

[9]  Peter Vary,et al.  Iterative source-channel decoder using extrinsic information from softbit-source decoding , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[10]  Stefano Mancini,et al.  Quantum stabilizer codes for correlated and asymmetric depolarizing errors , 2010, 1005.3374.

[11]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[12]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[13]  Vittorio Giovannetti A dynamical model for quantum memory channels , 2005 .

[14]  T. H. Liew,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels , 2011 .

[15]  Lajos Hanzo,et al.  EXIT-Chart-Aided Near-Capacity Quantum Turbo Code Design , 2015, IEEE Transactions on Vehicular Technology.

[16]  Mark M. Wilde,et al.  Entanglement boosts quantum turbo codes , 2011, ISIT.

[17]  Giuliano Benenti,et al.  Quantum capacity of dephasing channels with memory , 2007 .

[18]  Michael S. Postol A Proposed Quantum Low Density Parity Check Code , 2001, quant-ph/0108131.

[19]  Stefano Mancini,et al.  CONCATENATION OF ERROR AVOIDING WITH ERROR CORRECTING QUANTUM CODES FOR CORRELATED NOISE MODELS , 2010, 1006.2051.

[20]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[21]  Konrad Banaszek,et al.  Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise. , 2004, Physical review letters.

[22]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[23]  S. Mancini,et al.  Quantum channels with a finite memory , 2003, quant-ph/0305010.

[24]  Stefano Mancini,et al.  Memory effects in attenuation and amplification quantum processes , 2010, 1005.2878.

[25]  Giuliano Benenti,et al.  MEMORY EFFECTS IN A MARKOV CHAIN DEPHASING CHANNEL , 2008, 0802.4172.

[26]  B. L. Yeap,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding , 2002 .

[27]  Javier Garcia-Frías,et al.  Combining hidden Markov source models and parallel concatenated codes , 1997, IEEE Communications Letters.

[28]  C. Macchiavello,et al.  Transition behavior in the channel capacity of two-quibit channels with memory , 2004 .

[29]  Graeme Smith,et al.  Quantum channel capacities , 2010, 2010 IEEE Information Theory Workshop.

[30]  Lajos Hanzo,et al.  Efficient Computation of EXIT Functions for Nonbinary Iterative Decoding , 2006, IEEE Transactions on Communications.

[31]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[33]  Xiaobo Zhou,et al.  Exploitation of 2D binary source correlation using turbo block codes with fine-tuning , 2013, EURASIP J. Wirel. Commun. Netw..

[34]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[35]  Lajos Hanzo,et al.  EXIT-Chart Aided Quantum Code Design Improves the Normalised Throughput of Realistic Quantum Devices , 2016, IEEE Access.

[36]  Peng Huang,et al.  Quantum capacity of Pauli channels with memory , 2011 .

[37]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[38]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[39]  S. Mancini,et al.  Memory Effects in spin-chain channels for information transmission , 2008 .

[40]  N. Arshed,et al.  Entanglement-assisted classical capacity of quantum channels with correlated noise , 2006, quant-ph/0605108.

[41]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[42]  Stefano Mancini,et al.  Repetition versus noiseless quantum codes for correlated errors , 2009, 0906.3787.

[43]  R. Werner,et al.  Quantum channels with memory , 2005, quant-ph/0502106.

[44]  C. Macchiavello,et al.  Entanglement-enhanced information transmission over a quantum channel with correlated noise , 2001, quant-ph/0107052.

[45]  Rabia Jahangir,et al.  Quantum capacity of an amplitude-damping channel with memory , 2012, Quantum Inf. Process..

[46]  J. Gea-Banacloche,et al.  Quantum error correction against correlated noise , 2004 .

[47]  V. Giovannetti,et al.  Quantum channels and memory effects , 2012, 1207.5435.

[48]  A. Grant,et al.  Convergence of non-binary iterative decoding , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[49]  V. Karimipour,et al.  Entanglement and optimal strings of qubits for memory channels , 2006 .

[50]  Jean-Pierre Tillich,et al.  A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.

[51]  Sandor Imre,et al.  Quantum Computing and Communications: An Engineering Approach , 2005 .

[52]  Hermann Kampermann,et al.  Optimal superdense coding over memory channels , 2011 .