Multiscale recursive medians, scale-space, and transforms with applications to image processing

A cascade of increasing scale, 1-D, recursive median filters produces a sieve, termed an R-sieve, has a number of properties important to image processing. In particular, it (1) Simplifies signals without introducing new extrema or edges, that is, it preserves scale-space. It shares this property with Gaussian filters, but has the advantage of being significantly more robust. (2) The differences between successive stages of the sieve yield a transform, to the granularity domain. Patterns and shapes can be recognized in this domain using idempotent matched sieves and the result transformed back to the spatial domain. The R-sieve is very fast to compute and has a close relationship to 1-D alternating sequential filters with flat structuring elements. They are useful for machine vision applications.

[1]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[2]  J. Andrew Bangham,et al.  Scale-Space From Nonlinear Filters , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  M.-H. Chen,et al.  A Multiscanning Approach Based on Morphological Filtering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  J A Bangham,et al.  Data-sieving hydrophobicity plots. , 1988, Analytical biochemistry.

[5]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Peter D. Wendt Nonrecursive and recursive stack filters and their filtering behavior , 1990, IEEE Trans. Acoust. Speech Signal Process..

[7]  J. Andrew Bangham,et al.  Properties of a Series of Nested Median Filters, Namely the Data Sieve , 1993, IEEE Trans. Signal Process..

[8]  J. Andrew Bangham,et al.  Scale-space from nonlinear filters , 1995, Proceedings of IEEE International Conference on Computer Vision.

[9]  J. A. Bangham,et al.  Multiscale median and morphological filters used for 2D pattern recognition , 1993 .

[10]  Paul Jackway Morphological scale-space , 1992 .

[11]  J. Andrew Bangham,et al.  Multiscale median and morphological filters for 2D pattern recognition , 1994, Signal Process..

[12]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[14]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[15]  G. Arce,et al.  State description for the root-signal set of median filters , 1982 .

[16]  Gonzalo R. Arce,et al.  Stochastic analysis for the recursive median filter process , 1988, IEEE Trans. Inf. Theory.

[17]  Gonzalo R. Arce,et al.  Multistage order statistic filters for image sequence processing , 1991, IEEE Trans. Signal Process..

[18]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[19]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[20]  J. Andrew Bangham,et al.  Nonlinear filters to improve width estimates from linescan cameras , 1996, Electronic Imaging.

[21]  G. P. Dinneen Programming pattern recognition , 1955, AFIPS '55 (Western).

[22]  Pierre Chardaire,et al.  Multiscale Nonlinear Decomposition: The Sieve Decomposition Theorem , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Jaakko Astola,et al.  On root structures of median and median-type filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[24]  Peter F. M. Nacken Openings Can Introduce Zero Crossings in Boundary Curvature , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Gonzalo R. Arce,et al.  Deterministic properties of the recursive separable median filter , 1987, IEEE Trans. Acoust. Speech Signal Process..