Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields

Learning patterns of human behavior from sensor data is extremely important for high-level activity inference. This paper describes how to extract a person’s activities and significant places from traces of GPS data. The system uses hierarchically structured conditional random fields to generate a consistent model of a person’s activities and places. In contrast to existing techniques, this approach takes the high-level context into account in order to detect the significant places of a person. Experiments show significant improvements over existing techniques. Furthermore, they indicate that the proposed system is able to robustly estimate a person’s activities using a model that is trained from data collected by other persons.

[1]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[2]  Editors , 1986, Brain Research Bulletin.

[3]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[4]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[5]  Stuart J. Russell,et al.  Stochastic simulation algorithms for dynamic probabilistic networks , 1995, UAI.

[6]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[7]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[8]  Barry Brumitt,et al.  EasyLiving: Technologies for Intelligent Environments , 2000, HUC.

[9]  Svetha Venkatesh,et al.  Tracking and Surveillance in Wide-Area Spatial Environments Using the Abstract Hidden Markov Model , 2001, Int. J. Pattern Recognit. Artif. Intell..

[10]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[11]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[12]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[13]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[14]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[15]  Ben Taskar,et al.  Discriminative Probabilistic Models for Relational Data , 2002, UAI.

[16]  Henry A. Kautz,et al.  Intelligent Ubiquitous Computing to Support Alzheimer ’ s Patients : Enabling the Cognitively Disabled , 2002 .

[17]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[18]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[19]  Gerhard Lakemeyer,et al.  Exploring artificial intelligence in the new millennium , 2003 .

[20]  Andrew McCallum,et al.  Efficiently Inducing Features of Conditional Random Fields , 2002, UAI.

[21]  Fernando Pereira,et al.  Shallow Parsing with Conditional Random Fields , 2003, NAACL.

[22]  Y. Weiss,et al.  Finding the M Most Probable Configurations using Loopy Belief Propagation , 2003, NIPS 2003.

[23]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Andrew McCallum,et al.  Accurate Information Extraction from Research Papers using Conditional Random Fields , 2004, NAACL.

[25]  Paul A. Viola,et al.  Interactive Information Extraction with Constrained Conditional Random Fields , 2004, AAAI.

[26]  Trevor Darrell,et al.  Conditional Random Fields for Object Recognition , 2004, NIPS.

[27]  Krzysztof Z. Gajos,et al.  Opportunity Knocks: A System to Provide Cognitive Assistance with Transportation Services , 2004, UbiComp.

[28]  Kentaro Toyama,et al.  Project Lachesis: Parsing and Modeling Location Histories , 2004, GIScience.

[29]  David C. Hogg,et al.  On the feasibility of using a cognitive model to filter surveillance data , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[30]  Wolfram Burgard,et al.  Learning Motion Patterns of People for Compliant Robot Motion , 2005, Int. J. Robotics Res..

[31]  Ben Taskar,et al.  Discriminative learning of Markov random fields for segmentation of 3D scan data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Avi Pfeffer,et al.  Asynchronous Dynamic Bayesian Networks , 2005, UAI.

[33]  Blake Hannaford,et al.  A Hybrid Discriminative/Generative Approach for Modeling Human Activities , 2005, IJCAI.

[34]  Henry A. Kautz,et al.  Hierarchical Conditional Random Fields for GPS-Based Activity Recognition , 2005, ISRR.

[35]  Vibhav Gogate,et al.  Modeling Transportation Routines using Hybrid Dynamic Mixed Networks , 2005, UAI.

[36]  Sebastian Thrun,et al.  Discriminative Training of Kalman Filters , 2005, Robotics: Science and Systems.

[37]  Henry A. Kautz,et al.  Extending Continuous Time Bayesian Networks , 2005, AAAI.

[38]  Henry A. Kautz,et al.  Location-Based Activity Recognition using Relational Markov Networks , 2005, IJCAI.

[39]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[40]  Jeff A. Bilmes,et al.  Rao-Blackwellized Particle Filters for Recognizing Activities and Spatial Context from Wearable Sensors , 2006, ISER.

[41]  Dieter Fox,et al.  Location-Based Activity Recognition , 2005, KI.

[42]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..