The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella

The Bardet-Biedl syndrome protein complex (BBSome) is a cargo adapter rather than an essential part of the intraflagellar transport (IFT) machinery.

[1]  Nicholas Katsanis,et al.  Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. , 2009, The Journal of clinical investigation.

[2]  V. Sheffield,et al.  A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. , 2008, Developmental cell.

[3]  G. Pazour,et al.  Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease , 2008, The Journal of cell biology.

[4]  V. Sheffield,et al.  Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. , 2008, Human molecular genetics.

[5]  Yun Lu,et al.  Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans. , 2008, Developmental cell.

[6]  M. Hargrove,et al.  NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo , 2008, PloS one.

[7]  G. Bishop,et al.  Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia , 2008, Proceedings of the National Academy of Sciences.

[8]  V. Sheffield,et al.  Loss of Bardet–Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia , 2008, Proceedings of the National Academy of Sciences.

[9]  J. Scholey Intraflagellar transport motors in cilia: moving along the cell's antenna , 2008, The Journal of cell biology.

[10]  J. Lupski,et al.  Impaired photoreceptor protein transport and synaptic transmission in a mouse model of Bardet–Biedl syndrome , 2007, Vision Research.

[11]  G. Pazour,et al.  Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella , 2007, The Journal of cell biology.

[12]  S. Fisher,et al.  Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response , 2007, Nature Genetics.

[13]  Triscia W. Hendrickson,et al.  Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. , 2007, Cell motility and the cytoskeleton.

[14]  V. Sheffield,et al.  A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis , 2007, Cell.

[15]  J. Hancock PA promoted to manager , 2007, Nature Cell Biology.

[16]  P. Beales,et al.  Bardet–Biedl syndrome: beyond the cilium , 2007, Pediatric Nephrology.

[17]  G. Pazour,et al.  Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella , 2007, The Journal of cell biology.

[18]  G. Witman,et al.  Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility , 2007, The Journal of cell biology.

[19]  A. Mogilner,et al.  Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors , 2006, The Journal of cell biology.

[20]  O. Blacque,et al.  Bardet-Biedl syndrome: an emerging pathomechanism of intracellular transport , 2006, Cellular and Molecular Life Sciences CMLS.

[21]  Susan K. Dutcher,et al.  Two Flagellar Genes, AGG2 and AGG3, Mediate Orientation to Light in Chlamydomonas , 2006, Current Biology.

[22]  S. King,et al.  Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise , 2006, The Journal of cell biology.

[23]  W. Snell,et al.  Intraflagellar Transport Particles Participate Directly in Cilium-Generated Signaling in Chlamydomonas , 2006, Cell.

[24]  R. Lewis,et al.  BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus , 2006, Nature Genetics.

[25]  V. Sheffield,et al.  Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function. , 2006, Human molecular genetics.

[26]  Dylan T Burnette,et al.  Intraflagellar Transport Is Required for the Vectorial Movement of TRPV Channels in the Ciliary Membrane , 2005, Current Biology.

[27]  J. Rosenbaum,et al.  Characterization of the Intraflagellar Transport Complex B Core , 2005, Journal of Biological Chemistry.

[28]  J. Scholey,et al.  Functional coordination of intraflagellar transport motors , 2005, Nature.

[29]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[30]  J. Scholey Faculty Opinions recommendation of Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. , 2005 .

[31]  P. Beales,et al.  Lifting the lid on Pandora's box: the Bardet-Biedl syndrome. , 2005, Current opinion in genetics & development.

[32]  Qian Wang,et al.  Cilium-generated signaling and cilia-related disorders , 2005, Laboratory Investigation.

[33]  M. Porter,et al.  The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. , 2005, Molecular biology of the cell.

[34]  Steven P Gygi,et al.  The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. , 2005, Methods.

[35]  P. Lefebvre,et al.  The LF1 Gene of Chlamydomonas reinhardtii Encodes a Novel Protein Required for Flagellar Length Control , 2005, Genetics.

[36]  V. Sheffield,et al.  Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Pazour,et al.  A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. , 2004, Molecular biology of the cell.

[38]  Bethan E. Hoskins,et al.  Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse , 2004, Nature Genetics.

[39]  S. R. Wicks,et al.  Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. , 2004, Genes & development.

[40]  Annie P. Chiang,et al.  Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Tanya M. Teslovich,et al.  Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene , 2004, Cell.

[42]  Bethan E. Hoskins,et al.  The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression , 2004, Nature Genetics.

[43]  V. Sheffield,et al.  Establishing a connection between cilia and Bardet-Biedl Syndrome. , 2004, Trends in molecular medicine.

[44]  Tanya M. Teslovich,et al.  Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome , 2003, Nature.

[45]  G. Pazour,et al.  The vertebrate primary cilium is a sensory organelle. , 2003, Current opinion in cell biology.

[46]  G. Pazour,et al.  Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease , 2002, Current Biology.

[47]  J. Rosenbaum,et al.  Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles , 2001, Current Biology.

[48]  P. Lefebvre,et al.  The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly , 2001, Current Biology.

[49]  J. Lupski,et al.  Exploring the molecular basis of Bardet-Biedl syndrome. , 2001, Human molecular genetics.

[50]  H. Hirt,et al.  Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. , 2000, The Plant journal : for cell and molecular biology.

[51]  N. Hirokawa,et al.  Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein , 1999, Cell.

[52]  G. Pazour,et al.  The DHC1b (DHC2) Isoform of Cytoplasmic Dynein Is Required for Flagellar Assembly , 1999, The Journal of cell biology.

[53]  P. Beech,et al.  Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons , 1998, The Journal of cell biology.

[54]  S. Dutcher,et al.  Phosphoregulation of an Inner Dynein Arm Complex in Chlamydomonas reinhardtii Is Altered in Phototactic Mutant Strains , 1997, The Journal of cell biology.

[55]  G. Pazour,et al.  Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii , 1995, The Journal of cell biology.

[56]  Robert A. Bloodgood,et al.  The transmembrane signaling pathway involved in directed movements of Chlamydomonas flagellar membrane glycoproteins involves the dephosphorylation of a 60-kD phosphoprotein that binds to the major flagellar membrane glycoprotein , 1994, The Journal of cell biology.

[57]  K. Kozminski,et al.  A motility in the eukaryotic flagellum unrelated to flagellar beating. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Witman,et al.  Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy. , 1990, The Journal of biological chemistry.

[59]  J. Rochaix,et al.  A transposon with an unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii. , 1988, The EMBO journal.

[60]  G. Witman,et al.  Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas , 1984, The Journal of cell biology.

[61]  J. Rosenbaum,et al.  Multiple α- and β-tubulin genes in chlamydomonas and regulation of tubulin mRNA levels after deflagellation , 1981, Cell.

[62]  T. Cavalier-smith Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. , 1974, Journal of cell science.

[63]  P. Hegemann,et al.  Sensory Photoreceptors and Light Control of Flagellar Activity , 2009 .

[64]  H. Everberg,et al.  Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems. , 2008, Methods in molecular biology.

[65]  S. Gygi,et al.  Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain. , 2008, Journal of proteome research.

[66]  F. Plewniak,et al.  Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. , 2007, American journal of human genetics.

[67]  J. Rosenbaum,et al.  Intraflagellar transport , 2002, Nature Reviews Molecular Cell Biology.

[68]  T. Matsunaga,et al.  Assembly and function of Chlamydomonas flagellar mastigonemes as probed with a monoclonal antibody. , 1996, Journal of cell science.

[69]  G. Pazour,et al.  Assay of Chlamydomonas phototaxis. , 1995, Methods in cell biology.

[70]  P. Lefebvre Flagellar amputation and regeneration in Chlamydomonas. , 1995, Methods in cell biology.

[71]  P. Lefebvre Chapter 1 Flagellar Amputation and Regeneration in Chlamydomonas , 1995 .

[72]  G. Witman Chlamydomonas phototaxis. , 1993, Trends in cell biology.

[73]  G. Witman Isolation of Chlamydomonas flagella and flagellar axonemes. , 1986, Methods in enzymology.