Trajectory tracking in nonlinear systems via nonlinear reduced-order observers

The use of nonlinear control methods in control engineering implies, in general, the knowledge of the full state vector. In this paper we present a nonlinear observer of reduced order (i.e. the order of the observer is less than the order of the nonlinear system observed) for estimating the state variables to be used in a trajectory tracking control loop. The nonlinear observer has the following characteristics: (1) the speed of convergence is adjustable; (2) the closed-loop control for trajectory tracking, with the observer in the loop, is stable. Applications to a robot arm and a neural network are included.

[1]  Christopher I. Byrnes,et al.  Steady state response, separation principle and the output regulation of nonlinear systems , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[2]  Carlos Canudas de Wit,et al.  Sliding Observers for Robot Manipulators , 1989 .

[3]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[4]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[5]  Giuseppe Oriolo,et al.  A sensitivity approach to optimal spline robot trajectories , 1988, Autom..

[6]  Carlos Canudas de Wit,et al.  Trajectory tracking in robot manipulators via nonlinear estimated state feedback , 1992, IEEE Trans. Robotics Autom..

[7]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[9]  R.A. Garcia,et al.  Nonlinear observers in closed-loop trajectory tracking , 1994, Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics.

[10]  C. C. Wit,et al.  Adaptive control of robot manipulators via velocity estimated feedback , 1992 .

[11]  A. Isidori Nonlinear Control Systems , 1985 .

[12]  A. Germani,et al.  A Luenberger-like observer for nonlinear systems , 1993 .

[13]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[14]  M. Vidyasagar On the stabilization of nonlinear systems using state detection , 1980 .

[15]  J. L. Mancilla Aguilar,et al.  Exact linearization of nonlinear systems: trajectory tracking with bounded controls and state constraints , 1996 .

[16]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .