Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer

Enterobacteria, especially Escherichia coli, are abundant in patients with inflammatory bowel disease or colorectal cancer (CRC). However, it is unclear whether cancer is promoted by inflammation-induced expansion of E. coli and/or changes in expression of specific microbial genes. Here we use longitudinal (2, 12 and 20 weeks) 16S rRNA sequencing of luminal microbiota from ex-germ free mice to show that inflamed Il10−/− mice maintain a higher abundance of Enterobacteriaceae than healthy wild-type mice. Experiments with mono-colonized Il10−/− mice reveal that host inflammation is necessary for E. coli cancer-promoting activity. RNA-sequence analysis indicates significant changes in E. coli gene catalogue in Il10−/− mice, with changes mostly driven by adaptation to the intestinal environment. Expression of specific genes present in the tumor-promoting E. coli pks island are modulated by inflammation/CRC development. Thus, progression of inflammation in Il10−/− mice supports Enterobacteriaceae and alters a small subset of microbial genes important for tumor development.

[1]  J. Nicholson,et al.  Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. , 2012, Cell metabolism.

[2]  Timothy L. Tickle,et al.  Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment , 2012, Genome Biology.

[3]  R. Sartor,et al.  Antigen-presenting cell production of IL-10 inhibits T-helper 1 and 17 cell responses and suppresses colitis in mice. , 2011, Gastroenterology.

[4]  C. Bassis,et al.  Ecological Succession of Bacterial Communities during Conventionalization of Germ-Free Mice , 2012, Applied and Environmental Microbiology.

[5]  Sanjai J. Parikh,et al.  Host-Derived Nitrate Boosts Growth of E. coli in the Inflamed Gut , 2013, Science.

[6]  D. Kerjaschki,et al.  Association between intraepithelial Escherichia coli and colorectal cancer. , 1998, Gastroenterology.

[7]  Gabriel Cuevas-Ramos,et al.  Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells , 2010, Proceedings of the National Academy of Sciences.

[8]  Bonnie L. Bassler,et al.  Bacterial Small-Molecule Signaling Pathways , 2006, Science.

[9]  Maria Karlsson,et al.  Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. , 2010, Cell host & microbe.

[10]  Peter J. Woolf,et al.  GAGE: generally applicable gene set enrichment for pathway analysis , 2009, BMC Bioinformatics.

[11]  Rui Zhang,et al.  Induction of inducible nitric oxide synthase: a protective mechanism in colitis-induced adenocarcinoma. , 2006, Carcinogenesis.

[12]  J. Neu,et al.  Intestinal Microbial Ecology and Environmental Factors Affecting Necrotizing Enterocolitis , 2013, PloS one.

[13]  William A. Walters,et al.  Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. , 2012, Cell host & microbe.

[14]  R. Klopfleisch,et al.  Mild gut inflammation modulates the proteome of intestinal Escherichia coli. , 2014, Environmental microbiology.

[15]  N. Hall,et al.  Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer , 2013, Gut.

[16]  N. Barnich,et al.  Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. , 1998, Gastroenterology.

[17]  Weijun Luo,et al.  Pathview: an R/Bioconductor package for pathway-based data integration and visualization , 2013, Bioinform..

[18]  Jie Zhou,et al.  RNA-seq differential expression studies: more sequence or more replication? , 2014, Bioinform..

[19]  Steven Salzberg,et al.  BIOINFORMATICS ORIGINAL PAPER , 2004 .

[20]  R. Sartor,et al.  Interleukin 10-Deficient Mice Exhibit Defective Colonic Muc2 Synthesis Before and After Induction of Colitis by Commensal Bacteria , 2004, Inflammatory bowel diseases.

[21]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[22]  Carmen Buchrieser,et al.  Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells , 2006, Science.

[23]  C. Mason,et al.  Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data , 2013, Genome Biology.

[24]  C. Hart,et al.  Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. , 2004, Gastroenterology.

[25]  A. Fodor,et al.  Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model , 2013, The ISME Journal.

[26]  Ali Mortazavi,et al.  Scaffolding a Caenorhabditis nematode genome with RNA-seq. , 2010, Genome research.

[27]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[28]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[29]  J. Fox,et al.  CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. , 2003, Cancer research.

[30]  R. Schreiber,et al.  IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity , 2001, Nature.

[31]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[32]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[33]  J. Roth,et al.  Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota , 2011, Proceedings of the National Academy of Sciences.

[34]  T. Tobe The roles of two-component systems in virulence of pathogenic Escherichia coli and Shigella spp. , 2008, Advances in experimental medicine and biology.

[35]  Regine Hengge,et al.  The two-component network and the general stress sigma factor RpoS (sigma S) in Escherichia coli. , 2008, Advances in experimental medicine and biology.

[36]  Belgin Dogan,et al.  Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota , 2012, Science.

[37]  A. Viale,et al.  Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice , 2012, The Journal of experimental medicine.

[38]  A. Gewirtz,et al.  Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis , 2013, Gut.

[39]  E. Elinav,et al.  Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms , 2013, Nature Reviews Cancer.

[40]  M. Meyerson,et al.  Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. , 2013, Cell host & microbe.

[41]  Arend Hintze,et al.  Scaling metagenome sequence assembly with probabilistic de Bruijn graphs , 2011, Proceedings of the National Academy of Sciences.

[42]  C. Huttenhower,et al.  Metagenomic microbial community profiling using unique clade-specific marker genes , 2012, Nature Methods.

[43]  M. R. Rubinstein,et al.  Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. , 2013, Cell host & microbe.

[44]  Zaid Abdo,et al.  Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas , 2010, Gut microbes.

[45]  J. Hacker,et al.  Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. , 2007, FEMS microbiology letters.

[46]  W. Rabsch,et al.  Genetic Structure and Distribution of the Colibactin Genomic Island among Members of the Family Enterobacteriaceae , 2009, Infection and Immunity.

[47]  C. Jobin,et al.  The complex interplay between inflammation, the microbiota and colorectal cancer , 2013, Gut microbes.

[48]  J. Petrosino,et al.  The Gut Microbiome Modulates Colon Tumorigenesis , 2013, mBio.

[49]  U. Dobrindt,et al.  Genotoxicity of Escherichia coli Nissle 1917 strain cannot be dissociated from its probiotic activity , 2012, Gut microbes.

[50]  R. Knight,et al.  Diversity, stability and resilience of the human gut microbiota , 2012, Nature.

[51]  F. Theissig,et al.  Comparative study of the intestinal mucus barrier in normal and inflamed colon , 2006, Gut.

[52]  H. Herfarth,et al.  Modulation of the Intestinal Microbiota Alters Colitis-Associated Colorectal Cancer Susceptibility , 2009, PloS one.

[53]  Richard A. Moore,et al.  Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. , 2012, Genome research.

[54]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[55]  Philip Rosenstiel,et al.  NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. , 2013, The Journal of clinical investigation.

[56]  R. Sartor,et al.  Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. , 2005, Gastroenterology.

[57]  G. O’Toole,et al.  Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. , 2012, Annual review of cell and developmental biology.

[58]  D. Pezet,et al.  High Prevalence of Mucosa-Associated E. coli Producing Cyclomodulin and Genotoxin in Colon Cancer , 2013, PloS one.

[59]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[60]  Y. Lussier,et al.  Chronic intestinal inflammation induces stress-response genes in commensal Escherichia coli. , 2011, Gastroenterology.

[61]  Xin Chen,et al.  DOOR 2.0: presenting operons and their functions through dynamic and integrated views , 2013, Nucleic Acids Res..

[62]  L. T. Angenent,et al.  Succession of microbial consortia in the developing infant gut microbiome , 2010, Proceedings of the National Academy of Sciences.

[63]  B. Tjaden,et al.  Computational analysis of bacterial RNA-Seq data , 2013, Nucleic acids research.

[64]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.