Surface Texturing of CVD Diamond Assisted by Ultrashort Laser Pulses

Diamond is a wide bandgap semiconductor with excellent physical properties which allow it to operate under extreme conditions. However, the technological use of diamond was mostly conceived for the fabrication of ultraviolet, ionizing radiation and nuclear detectors, of electron emitters, and of power electronic devices. The use of nanosecond pulse excimer lasers enabled the microstructuring of diamond surfaces, and refined techniques such as controlled ablation through graphitization and etching by two-photon surface excitation are being exploited for the nanostructuring of diamond. On the other hand, ultrashort pulse lasers paved the way for a more accurate diamond microstructuring, due to reduced thermal effects, as well as an effective surface nanostructuring, based on the formation of periodic structures at the nanoscale. It resulted in drastic modifications of the optical and electronic properties of diamond, of which “black diamond” films are an example for future high-temperature solar cells as well as for advanced optoelectronic platforms. Although experiments on diamond nanostructuring started almost 20 years ago, real applications are only today under implementation.

[1]  Alexander Oh,et al.  A novel detector with graphitic electrodes in CVD diamond , 2013 .

[2]  G. Ma,et al.  Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser , 2016 .

[3]  L. Ley,et al.  Surface transfer doping of diamond , 2004, Nature.

[4]  L. Ostrovskaya,et al.  Wettability of nanocrystalline diamond films , 2007 .

[5]  Tomoyuki Ueki,et al.  Femtosecond laser-induced modification at aluminum/diamond interface , 2017 .

[6]  Kenzo Miyazaki,et al.  Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses. , 2008, Optics express.

[7]  V. Krivobok,et al.  Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique , 2017 .

[8]  G. Parrini,et al.  Three-dimensional diamond detectors: Charge collection efficiency of graphitic electrodes , 2013 .

[9]  Magdalena Forster,et al.  50-nanometer femtosecond pulse laser induced periodic surface structures on nitrogen-doped diamond , 2017 .

[10]  K. Sugioka,et al.  Femtosecond laser three-dimensional micro- and nanofabrication , 2014 .

[11]  Volker Wittwer,et al.  Glazing with very high solar transmittance , 1998 .

[12]  Chunlei Guo,et al.  Femtosecond laser-induced periodic surface structure formation on tungsten , 2008 .

[13]  G. Botton,et al.  Microscopic investigation of single-crystal diamond following ultrafast laser irradiation , 2011 .

[14]  K. Haenen,et al.  Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond , 2016 .

[15]  D. M. Trucchi,et al.  Femtosecond laser treatments to tailor the optical properties of hafnium carbide for solar applications , 2015 .

[16]  G. Conte,et al.  Diamond Detectors for UV and X-Ray Source Imaging , 2012, IEEE Electron Device Letters.

[17]  N. Mel’nik,et al.  Ultrafast photoionization and excitation of surface-plasmon-polaritons on diamond surfaces , 2017, 1701.04650.

[18]  M. Dinescu,et al.  Femtosecond Laser Induced Periodic Surface Structures on ZnO Thin Films , 2009 .

[19]  Zhi‐zhan Xu,et al.  Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. , 2009, ACS nano.

[20]  Matthew Parrish,et al.  On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing. , 2010, Optics express.

[21]  S. Yamasaki,et al.  Heavily phosphorus-doped nano-crystalline diamond electrode for thermionic emission application , 2016 .

[22]  Jianzhao Li,et al.  Quantized structuring of transparent films with femtosecond laser interference , 2014, Light: Science & Applications.

[23]  Harold K. Haugen,et al.  Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses , 2003 .

[24]  G. Turri,et al.  Index of refraction from the near-ultraviolet to the near-infrared from a single crystal microwave-assisted CVD diamond , 2017 .

[25]  Piero Pianetta,et al.  Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.

[26]  John G. Rarity,et al.  Laser writing of coherent colour centres in diamond , 2016, Nature Photonics.

[27]  Chunlei Guo,et al.  Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses , 2006 .

[28]  A. Vorobyev,et al.  Multifunctional surfaces produced by femtosecond laser pulses , 2015 .

[29]  Ernesto Limiti,et al.  DC and RF performance of surface channel MESFETs on H-terminated polycrystalline diamond , 2009 .

[30]  Ainara Rodriguez,et al.  Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). , 2017, Optics express.

[31]  V. Ralchenko,et al.  Laser Induced Nanoablation of Diamond Materials , 2011 .

[32]  R. Ramponi,et al.  How Plasmonic excitation influences the LIPSS formation on diamond during multipulse femtosecond laser irradiation , 2017 .

[33]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[34]  P. Calvani,et al.  Absorptance enhancement in fs‐laser‐treated CVD diamond , 2015 .

[35]  S. Gloor,et al.  Antireflection structures written by excimer laser on CVD diamond , 2000 .

[36]  J.Z.P. Skolski,et al.  Laser-induced periodic surface structures: fingerprints of light localization , 2012 .

[37]  David J. Webb,et al.  Femtosecond laser-induced microstructures on diamond for microfluidic sensing device applications , 2013 .

[38]  Koji Sugioka,et al.  Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass , 2014, Sensors.

[39]  Qihong Wu,et al.  Femtosecond laser-induced periodic surface structure on diamond film , 2003 .

[40]  Eric Mazur,et al.  Near-unity below-band-gap absorption by microstructured silicon , 2001 .

[41]  William D. Brown,et al.  Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters , 1999 .

[42]  M. Sentis,et al.  Femtosecond ablation of ultrahard materials , 2002 .

[43]  S. K. Sundaram,et al.  Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses , 2002, Nature materials.

[44]  Florenta Costache,et al.  Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light , 2006 .

[45]  K Miura,et al.  Periodic metallo-dielectric structure in diamond. , 2009, Optics express.

[46]  Eric Mazur,et al.  Silicon Surface Morphologies after Femtosecond Laser Irradiation , 2006 .

[47]  P. Calvani,et al.  Very Fast and Primingless Single-Crystal-Diamond X-Ray Dosimeters , 2012, IEEE Electron Device Letters.

[48]  V. Konov,et al.  Fabrication of CVD Diamond Optics with Antireflective Surface Structures , 1999 .

[49]  L. Weston,et al.  Characteristics of 2-photon ultraviolet laser etching of diamond , 2011 .

[50]  S. Goodnick,et al.  Demonstration of Diamond-Based Schottky p-i-n Diode With Blocking Voltage > 500 V , 2016, IEEE Electron Device Letters.

[51]  D. M. Trucchi,et al.  Effect of surface texturing by femtosecond laser on tantalum carbide ceramics for solar receiver applications , 2017 .

[52]  T. Makimoto,et al.  Diamond FET using high-quality polycrystalline diamond with f/sub T/ of 45 GHz and f/sub max/ of 120 GHz , 2006, IEEE Electron Device Letters.

[53]  Bangshan Sun,et al.  High conductivity micro-wires in diamond following arbitrary paths , 2014 .

[54]  Eric Mazur,et al.  Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces , 2009 .

[55]  E. Spiriti,et al.  All-carbon detector with buried graphite pillars in CVD diamond , 2014 .

[56]  D. M. Trucchi,et al.  Graphite distributed electrodes for diamond-based photon-enhanced thermionic emission solar cells , 2017 .

[57]  Ya Cheng,et al.  Large area uniform nanostructures fabricated by direct femtosecond laser ablation. , 2008, Optics express.

[58]  P. Calvani,et al.  Mosaic diamond detectors for fast neutrons and large ionizing radiation fields , 2015 .

[59]  Antonio Luque,et al.  Understanding intermediate-band solar cells , 2012, Nature Photonics.

[60]  S. Juodkazis,et al.  Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback , 2011, Nanotechnology.

[61]  P. Calvani,et al.  Optical properties of femtosecond laser-treated diamond , 2014 .

[62]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[63]  V. V. Kononenko,et al.  Formation of antireflective surface structures on diamond films by laser patterning , 1999 .

[64]  J. Hosson,et al.  On the surface topography of ultrashort laser pulse treated steel surfaces , 2011 .

[65]  P. Calvani,et al.  Black diamond for solar energy conversion , 2016 .

[66]  K. Janulewicz,et al.  Structural transformation of monocrystalline diamond driven by ultrashort laser pulses , 2016 .

[67]  D. M. Trucchi,et al.  Optimization of black diamond films for solar energy conversion , 2016 .

[68]  K. Janulewicz,et al.  Structural transformations in femtosecond laser-processed n-type 4H-SiC , 2016 .

[69]  R. Ramponi,et al.  Femtosecond laser surface structuring of molybdenum thin films , 2015 .

[70]  Anirudha V. Sumant,et al.  MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films , 2014 .

[71]  C. Wang,et al.  Laser-induced graphitization on a diamond (111) surface. , 2000, Physical review letters.

[72]  Bernardus Engelina Römer Gerardus Richardus,et al.  Modification of Cu surface with picosecond laser pulses , 2014 .

[73]  Zhi‐zhan Xu,et al.  Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond , 2009 .

[74]  E. Mazur,et al.  The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations , 2010, Nanotechnology.

[75]  Nozomi Takayama,et al.  Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser , 2017 .

[76]  Chunlei Guo,et al.  Femtosecond laser blackening of platinum , 2008 .

[77]  Hideki Yamamoto,et al.  Diamond Field-Effect Transistors with 1.3 A/mm Drain Current Density by Al$_{2}$O$_{3}$ Passivation Layer , 2012 .

[78]  S. Salvatori,et al.  Diamond device architectures for UV laser monitoring , 2016 .

[79]  W. Lüthy,et al.  Laser‐induced surface structures on diamond films , 1995 .

[80]  C. Bradac,et al.  Two-photon polarization-selective etching of emergent nano-structures on diamond surfaces , 2014, Nature Communications.

[81]  D. M. Trucchi,et al.  Buried Boron Doped Layer for CVD Diamond Photo-Thermionic Cathodes , 2016, IEEE Transactions on Nanotechnology.

[82]  A. Rodriguez,et al.  Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring , 2017 .

[83]  D. M. Trucchi,et al.  Impact of Laser Wavelength on the Optical and Electronic Properties of Black Diamond , 2017 .

[84]  R. Ramponi,et al.  Origin of femtosecond laser induced periodic nanostructure on diamond , 2017 .