Large induced forests in sparse graphs

For a graph G, let a(G) denote the maximum size of a subset of vertices that induces a forest. Suppose that G is connected with n vertices, e edges, and maximum degree Δ. Our results include: (a) if Δ ≤ 3, and G ≠ K4, then a(G) ≥ n - e-4 - 1-4 and this is sharp for all permissible e ≡ 3 (mod 4); and (b) if Δ ≥ 3, then a(G) ≥ α(G) + (n - α(G))-(Δ - 1)2. Several problems remain open. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 113–123, 2001

[1]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[2]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[3]  Béla Bollobás Chromatic number, girth and maximal degree , 1978, Discret. Math..

[4]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[5]  Noga Alon,et al.  Large induced degenerate subgraphs , 1987, Graphs Comb..