Molecular dynamics simulation of human serum paraoxonase 1 in DPPC bilayer reveals a critical role of transmembrane helix H1 for HDL association

[1]  S. K. Pradhan,et al.  Molecular dynamics simulation of neuropeptide B and neuropeptide W in the dipalmitoylphosphatidylcholine membrane bilayer , 2014, Journal of biomolecular structure & dynamics.

[2]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[3]  Andrea Spitaleri,et al.  Exploring PHD Fingers and H3K4me0 Interactions with Molecular Dynamics Simulations and Binding Free Energy Calculations: AIRE-PHD1, a Comparative Study , 2012, PloS one.

[4]  Dan S. Tawfik,et al.  Catalytic versatility and backups in enzyme active sites: the case of serum paraoxonase 1. , 2012, Journal of molecular biology.

[5]  A. Naito,et al.  Molecular dynamics simulation of Bombolitin II in the dipalmitoylphosphatidylcholine membrane bilayer. , 2011, Biophysical journal.

[6]  Matthew W. Peterson,et al.  Computational characterization of how the VX nerve agent binds human serum paraoxonase 1 , 2011, Journal of molecular modeling.

[7]  Wonpil Im,et al.  Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. , 2010, Biophysical journal.

[8]  S. White,et al.  MPEx: A tool for exploring membrane proteins , 2009, Protein science : a publication of the Protein Society.

[9]  William J. Allen,et al.  GridMAT‐MD: A grid‐based membrane analysis tool for use with molecular dynamics , 2009, J. Comput. Chem..

[10]  N. Wareham,et al.  High-Density Lipoprotein Particle Size and Concentration and Coronary Risk , 2009, Annals of Internal Medicine.

[11]  J. Killian,et al.  On the orientation of a designed transmembrane peptide: toward the right tilt angle? , 2007, Journal of the American Chemical Society.

[12]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[13]  S. Parthasarathy,et al.  Aspirin is a substrate for paraoxonase-like activity: implications in atherosclerosis. , 2007, Atherosclerosis.

[14]  Christian Kandt,et al.  Setting up and running molecular dynamics simulations of membrane proteins. , 2007, Methods.

[15]  Dan S. Tawfik,et al.  The 192R/Q polymorphs of serum paraoxonase PON1 differ in HDL binding, lipolactonase stimulation, and cholesterol efflux Published, JLR Papers in Press, August 16, 2006.s⃞ , 2006, Journal of Lipid Research.

[16]  A. Sum,et al.  Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. , 2006, Biophysical journal.

[17]  R. Larson,et al.  Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch. , 2006, Biophysical journal.

[18]  Dan S. Tawfik,et al.  The Histidine 115-Histidine 134 Dyad Mediates the Lactonase Activity of Mammalian Serum Paraoxonases* , 2006, Journal of Biological Chemistry.

[19]  Dan S. Tawfik,et al.  High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. , 2005, Biochemistry.

[20]  Olga Khersonsky,et al.  Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. , 2005, Biochemistry.

[21]  M. Sansom,et al.  Lipid-protein interactions of integral membrane proteins: a comparative simulation study. , 2004, Biophysical journal.

[22]  M. Mackness,et al.  Paraoxonase 1 and atherosclerosis: is the gene or the protein more important? , 2004, Free radical biology & medicine.

[23]  G. Getz,et al.  Paraoxonase, a cardioprotective enzyme: continuing issues , 2004, Current opinion in lipidology.

[24]  Dan S. Tawfik,et al.  Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes , 2004, Nature Structural &Molecular Biology.

[25]  B. La Du,et al.  Pharmacogenetics of paraoxonases: a brief review , 2004, Naunyn-Schmiedeberg's Archives of Pharmacology.

[26]  De-Pei Liu,et al.  Paraoxonase gene polymorphisms, oxidative stress, and diseases , 2003, Journal of Molecular Medicine.

[27]  B. La Du,et al.  Lactonase and lactonizing activities of human serum paraoxonase (PON1) and rabbit serum PON3. , 2003, Biochemical pharmacology.

[28]  Erik Strandberg,et al.  Snorkeling of lysine side chains in transmembrane helices: how easy can it get? , 2003, FEBS letters.

[29]  J. Killian,et al.  Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. , 2003, Biochemistry.

[30]  Anthony E. Klon,et al.  Molecular dynamics simulations on discoidal HDL particles suggest a mechanism for rotation in the apo A-I belt model. , 2002, Journal of molecular biology.

[31]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Arne Elofsson,et al.  A study of quality measures for protein threading models , 2001, BMC Bioinformatics.

[33]  P. Kollman,et al.  Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. , 2000, Accounts of chemical research.

[34]  J. Killian,et al.  How proteins adapt to a membrane-water interface. , 2000, Trends in biochemical sciences.

[35]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[36]  B. La Du,et al.  Human serum Paraoxonase/Arylesterase's retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids : apolipoprotein A-I stabilizes activity. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[37]  S. White,et al.  The preference of tryptophan for membrane interfaces. , 1998, Biochemistry.

[38]  D. Shih,et al.  Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis , 1998, Nature.

[39]  C. Kuo,et al.  Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity. , 1998, Drug metabolism and disposition: the biological fate of chemicals.

[40]  B. La Du,et al.  Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. , 1998, The Journal of clinical investigation.

[41]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[42]  M. Keifer,et al.  The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin , 1996, Nature Genetics.

[43]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[44]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[45]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[46]  T. Yeates,et al.  Verification of protein structures: Patterns of nonbonded atomic interactions , 1993, Protein science : a publication of the Protein Society.

[47]  J. Nagle,et al.  Area/lipid of bilayers from NMR. , 1993, Biophysical journal.

[48]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[49]  D. Eisenberg,et al.  Assessment of protein models with three-dimensional profiles , 1992, Nature.

[50]  A. Smolen,et al.  Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. , 1991, Drug metabolism and disposition: the biological fate of chemicals.

[51]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[52]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.