HYDROSCAN: Airborne laser mapping of hydrological features and resources

A summary of the technology and integration of components for a generic airborne laser scanning (ALS) system is provided. At times the Optech ALTM 3100 is used as an example, as this is the sensor owned and operated by the Applied Geomatics Research Group (AGRG). ALS mapping systems are an integration of four main measuring systems: 1) a differential global position system (GPS) solution is used to fix the position of the aircraft platform; 2) an inertial measurement unit (IMU) is used to record the angular orientation of the sensor; 3) a LiDAR (light detection and ranging) system is used to emit and receive pulses of laser light; and 4) a scanning system redirects laser pulses orthogonally beneath the aircraft platform to collect of swath of data at ground level. ALS LiDAR sensors are most commonly configured to map earth surface terrain at a high spatial resolution; however, bathymetric depth mapping using dual laser wavelengths and water quality mapping using LiDAR fluorescence techniques are becoming more common place.

[1]  M. Marani,et al.  The Ecogeomorphology of Tidal Marshes , 2004 .

[2]  D. Pennock,et al.  Probability Distribution and Spatial Dependence of Nitrous Oxide Emission , 2006 .

[3]  E. Watson,et al.  Tree-ring-based mass-balance estimates for the past 300 years at Peyto Glacier, Alberta, Canada , 2004, Quaternary Research.

[4]  Kiyun Yu,et al.  Assessing the Possibility of Landcover Classification Using Lidar Intensity Data , 2002 .

[5]  David J. Harding,et al.  Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements , 2001 .

[6]  E. Næsset,et al.  Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .

[7]  J. French,et al.  Airborne LiDAR in support of geomorphological and hydraulic modelling , 2003 .

[8]  M. Kirkby TOPMODEL: A personal view , 1997 .

[9]  Xuexia Chen,et al.  Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest , 2004 .

[10]  L. Leonard,et al.  The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies , 2006 .

[11]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[12]  Jingfang Huang,et al.  A Gravimetric Geoid Model for Vertical Datum in Canada , 2004 .

[13]  Paul D. Bates,et al.  Floodplain friction parameterization in two‐dimensional river flood models using vegetation heights derived from airborne scanning laser altimetry , 2003 .

[15]  J. Means,et al.  Predicting forest stand characteristics with airborne scanning lidar , 2000 .

[16]  R. Clark,et al.  Spring temperature, clutch initiation date and duck nest success: a test of the mismatch hypothesis. , 2007, The Journal of animal ecology.

[17]  Alain Pietroniro,et al.  Inferring Glacier Mass Balance Using Radarsat: Results From Peyto Glacier, Canada , 1999 .

[18]  K. Lim,et al.  Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .

[19]  S. Temmerman,et al.  Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations , 2005, Hydrobiologia.

[20]  K. Beven,et al.  The in(a/tan/β) index:how to calculate it and how to use it within the topmodel framework , 1995 .

[21]  The Little Ice Age , 1989 .

[22]  E. Anderson,et al.  LIDAR density and linear interpolator effects on elevation estimates , 2005 .

[23]  M. Hayashi,et al.  Infiltration and solute transport under a seasonal wetland: bromide tracer experiments in Saskatoon, Canada , 2004 .

[24]  Trond Eiken,et al.  Airborne measurement of glacier surface elevation by scanning laser altimeter , 1997, Annals of Glaciology.

[25]  Jerry C. Ritchie,et al.  Estimation of effective aerodynamic roughness of Walnut Gulch watershed with laser altimeter measurements , 1994 .

[26]  C. Hopkinson,et al.  Assessment of airborne scanning laser altimetry (lidar) in a deltaic wetland environment , 2003 .

[27]  P. Bates,et al.  Integration of high-resolution topographic data with floodplain flow models. , 2000 .

[28]  Hants Gu,et al.  Beach topography mapping - a comparison of techniques , 2000 .

[29]  Tim Webster,et al.  The application of lidar-derived digital elevation model analysis to geological mapping: an example from the Fundy Basin, Nova Scotia, Canada , 2006 .

[30]  Marc Véronneau The Canadian Gravimetric Geoid Model of 2000 (CGG2000) , 2002 .

[31]  Determination of Changes in Volume and Elevation of Glaciers using Digital Elevation Models for the Vernagtferner, Ôtztal Alps, Austria , 1986 .

[32]  Werner A. Kurz,et al.  A 70-YEAR RETROSPECTIVE ANALYSIS OF CARBON FLUXES IN THE CANADIAN FOREST SECTOR , 1999 .

[33]  H. Schmid,et al.  A Simple Parameterisation for Flux Footprint Predictions , 2004 .

[34]  D. Montgomery,et al.  Digital elevation model grid size, landscape representation, and hydrologic simulations , 1994 .

[35]  P. D. Batesa,et al.  A simple raster-based model for flood inundation simulation , 2000 .

[36]  Michael A. Lefsky,et al.  Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity , 2005 .

[37]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[38]  C. Hopkinson,et al.  The effect of glacier wastage on the flow of the Bow River at Banff, Alberta, 1951–1993 , 1998 .

[39]  M. Flood,et al.  Commercial implications of topographic terrain mapping using scanning airborne laser radar , 1997 .

[40]  John R. Krebs,et al.  Improving bird population models using airborne remote sensing , 2000 .

[41]  Michael R. Raupach,et al.  Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index , 1994 .

[42]  M. Hodgson,et al.  Accuracy of Airborne Lidar-Derived Elevation: Empirical Assessment and Error Budget , 2004 .

[43]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[44]  Peter M. Atkinson,et al.  Three-dimensional mapping of light transmittance and foliage distribution using lidar , 2003 .

[45]  Roger G. Barry,et al.  Mountain weather and climate , 1982 .

[46]  Erik Næsset,et al.  Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser , 2004 .

[47]  Oliver Sonnentag,et al.  Leaf area index measurements at Fluxnet-Canada forest sites , 2006 .

[48]  G. Kamp,et al.  Modelling Canadian prairie wetland hydrology using a semi‐distributed streamflow model , 2000 .

[49]  S. Filin Recovery of Systematic Biases in Laser Altimetry Data Using Natural Surfaces , 2003 .

[50]  M. Véronneau The GSD95 Geoid Model for Canada , 1997 .

[51]  J. Wallace,et al.  Evaporation from sparse crops‐an energy combination theory , 2007 .

[52]  Chris Hopkinson The Influence of Lidar Acquisition Settings on Canopy Penetration and Laser Pulse Return Characteristics , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[53]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[54]  Laura Chasmer,et al.  Vegetation class dependent errors in lidar ground elevation and canopy height estimates in a boreal wetland environment , 2005 .

[55]  Laura Chasmer,et al.  Towards a universal lidar canopy height indicator , 2006 .

[56]  W. Krabill,et al.  Gross-merchantable timber volume estimation using an airborne lidar system , 1986 .

[57]  Kenneth C. Jezek,et al.  Greenland ice sheet thickness changes measured by laser altimetry , 1994 .

[58]  Laura Chasmer,et al.  Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar , 2006 .

[59]  Zachary H. Bowen,et al.  EVALUATION OF LIGHT DETECTION AND RANGING (LIDAR) FOR MEASURING RIVER CORRIDOR TOPOGRAPHY 1 , 2002 .

[60]  Stephen E. Darby,et al.  Effect of Riparian Vegetation on Flow Resistance and Flood Potential , 1999 .

[61]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[62]  R. Davidson‐Arnott,et al.  Hydrodynamics and sedimentation in salt marshes: examples from a macrotidal marsh, Bay of Fundy , 2002 .

[63]  Scot E. Smith,et al.  Determination of Wetland Vegetation Height with LIDAR , 2004 .

[64]  R. Ibbitt,et al.  Re-scaling the topographic index to improve the representation of physical processes in catchment models , 2004 .

[65]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[66]  G. Østrem,et al.  Glacier mass-balance measurements : A manual for field and office work , 1993 .

[67]  R. Hill,et al.  Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data , 2003 .

[68]  M. Hoelzle,et al.  On Rates and Acceleration Trends of Global Glacier Mass Changes , 1999 .

[69]  Tim Webster,et al.  High-Resolution Elevation and Image Data Within the Bay of Fundy Coastal Zone, Nova Scotia, Canada , 2004 .

[70]  Dan Pennock,et al.  Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands , 2006 .

[71]  R. Davidson‐Arnott,et al.  Controls on spatial patterns of sediment deposition across a macro-tidal salt marsh surface over single tidal cycles , 2006 .

[72]  S. Senner,et al.  Approaches to the Conservation of Coastal Wetlands in the Western Hemisphere , 1991 .

[73]  Tim Webster,et al.  Using topographic lidar to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada , 2004 .

[74]  R. Tabony,et al.  Relations between minimum temperature and topography in great britain , 1985 .

[75]  S. Running,et al.  Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century , 2006 .

[76]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[77]  James K. Yungel,et al.  Elevation changes of ice caps in the Canadian Arctic Archipelago , 2004 .

[78]  M. Hodgson,et al.  An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs , 2003 .

[79]  C. Hopkinson The net volumetric loss of glacier cover within the Bow Valley above Banff, Alberta, 1951 - 1993 , 1997 .

[80]  T. Webster,et al.  Object-oriented land cover classification of lidar-derived surfaces , 2006 .

[81]  J. Dozier,et al.  Rapid calculation of terrain parameters for radiation modeling from digital elevation data , 1990 .

[82]  Emmanuel P. Baltsavias,et al.  A comparison between photogrammetry and laser scanning , 1999 .

[83]  Valerie A. Thomas,et al.  Spatial modelling of the fraction of photosynthetically active radiation absorbed by a boreal mixedwood forest using a lidar–hyperspectral approach , 2006 .

[84]  Chris Hopkinson,et al.  Using airborne lidar to assess the influence of glacier downwasting on water resources in the Canadian Rocky Mountains , 2006 .

[85]  D. Fox,et al.  Effect of Elevation and Aspect on Wind, Temperature and Humidity , 1986 .

[86]  Sonia Silvestri,et al.  Tidal regime, salinity and salt marsh plant zonation , 2005 .

[87]  Mark A. Friedl,et al.  Determination of Roughness Lengths for Heat and Momentum Over Boreal Forests , 2003 .

[88]  D. P. Turner,et al.  Scaling net primary production to a MODIS footprint in support of Earth observing system product validation , 2004 .

[89]  William E. Carter Engineering Applications of Airborne Scanning Lasers: Reports From the Field , 2006 .

[90]  Laura Chasmer,et al.  Mapping Snowpack Depth Beneath Forest Canopies Using Airborne Lidar , 2004 .

[91]  T. Dawson,et al.  Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .

[92]  Bernhard Rabus,et al.  Airborne surface profiling of glaciers : a case-study in Alaska , 1996 .

[93]  Tania Ruth Scott,et al.  LiDAR mapping of tidal marshes for ecogeomorphological modelling in the TIDE project , 2005 .

[94]  Sylvain G. Leblanc,et al.  Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests , 2005 .

[95]  Håkan Olsson,et al.  Simulating the effects of lidar scanning angle for estimation of mean tree height and canopy closure , 2003 .

[96]  Laura Chasmer,et al.  Examining the Influence of Changing Laser Pulse Repetition Frequencies on Conifer Forest Canopy Returns , 2006 .

[97]  David M. Cobby,et al.  Two‐dimensional hydraulic flood modelling using a finite‐element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry , 2003 .

[98]  SPATIAL VARIABILITY IN CHANGES IN SURFACE ELEVATION IN SALT MARSHES OF THE CUMBERLAND BASIN, BAY OF FUNDY , 2003 .

[99]  M. Hayashi,et al.  Focused infiltration of snowmelt water in partially frozen soil under small depressions , 2003 .

[100]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[101]  M. Fathi-Maghadam,et al.  Nonrigid, Nonsubmerged, Vegetative Roughness on Floodplains , 1997 .

[103]  K. Itten,et al.  Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction , 2006 .

[104]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[105]  J. Monteith,et al.  Boundary Layer Climates. , 1979 .

[106]  P. Bates,et al.  Predicting floodplain inundation: raster‐based modelling versus the finite‐element approach , 2001 .

[107]  Kelly Elder,et al.  Estimating the spatial distribution of snow water equivalence in a montane watershed , 1998 .

[108]  Edward W. Bork,et al.  Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM Accuracy , 2006 .

[109]  P. Wiberg,et al.  Flow and Sediment Transport on a Tidal Salt Marsh Surface , 2000 .

[110]  Ramakrishna R. Nemani,et al.  Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[111]  Juha Hyyppä,et al.  Effects of flight altitude on tree height estimation using airborne laser scanning , 2004 .

[112]  J. R. Jensen,et al.  Creation of digital terrain models using an adaptive lidar vegetation point removal process , 2002 .

[113]  T. Geist,et al.  INVESTIGATIONS OF AIRBORNE LASER SCANNING SIGNAL INTENSITY ON GLACIAL SURFACES-UTILIZING COMPREHENSIVE LASER GEOMETRY MODELING AND ORTHOPHOTO SURFACE MODELING (A CASE STUDY: SVARTISHEIBREEN, NORWAY) , 2003 .

[114]  B. Csathó,et al.  ICESat measurements reveal complex pattern of elevation changes on Siple Coast ice streams, Antarctica , 2005 .

[115]  W. Massman,et al.  AN ANALYTICAL ONE-DIMENSIONAL MODEL OF MOMENTUM TRANSFER BY VEGETATION OF ARBITRARY STRUCTURE , 1997 .

[116]  M. Luther,et al.  Flow hydrodynamics in tidal marsh canopies , 1995 .

[117]  Tim L. Webster,et al.  An automated GIS procedure for comparing GPS and proximal LIDAR elevations , 2006, Comput. Geosci..

[118]  J. Fraser,et al.  Factors affecting piping plover chick survival in different brood- rearing habitats , 1995 .

[119]  Roberto Manduchi,et al.  Supervised Parametric Classification of Aerial LiDAR Data , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[120]  F. Chapin,et al.  Principles of Terrestrial Ecosystem Ecology , 2002, Springer New York.

[121]  A. Arendt,et al.  Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level , 2002, Science.

[122]  Aldo V. Vecchia,et al.  How many Stakes are Required to Measure the Mass Balance of a Glacier , 1999 .

[123]  Christian Heipke,et al.  Digital Terrain Models As A Tool For Glacier Studies , 1990, Journal of Glaciology.

[124]  John L. Monteith,et al.  A four-layer model for the heat budget of homogeneous land surfaces , 1988 .

[125]  Tim L. Webster,et al.  LIDAR Validation Using GIS: A Case Study Comparison between Two LIDAR Collection Methods , 2005 .

[126]  Laura Chasmer,et al.  Applications of lidar mapping in a glacierised mountainous terrain , 2001 .

[127]  B. J. Garnier,et al.  The evaluation of surface variations in solar radiation income , 1970 .

[128]  R. Shaw,et al.  Aerodynamic roughness of a plant canopy: A numerical experiment , 1982 .

[129]  D. S. Munro COMPARISON OF MELT ENERGY COMPUTATIONS AND ABLATOMETER MEASUREMENTS ON MELTING ICE AND SNOW , 1990 .

[130]  D. Mason,et al.  Image processing of airborne scanning laser altimetry data for improved river flood modelling , 2001 .

[131]  Markus Hollaus,et al.  Airborne laser scanning and usefulness for hydrological models , 2005 .

[132]  P. Treitz,et al.  Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density , 2006 .

[133]  D. Roberts,et al.  Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape , 2004 .

[134]  A. Haines Climate change 2001: the scientific basis. Contribution of Working Group 1 to the Third Assessment report of the Intergovernmental Panel on Climate Change [Book review] , 2003 .

[135]  Tim Webster,et al.  Flood-risk mapping for storm-surge events and sea-level rise using lidar for southeast New Brunswick , 2006 .

[136]  Rob Jamieson,et al.  Sources and Persistence of Fecal Coliform Bacteria in a Rural Watershed , 2003 .

[137]  A. Hastings,et al.  Use of lidar to study changes associated with Spartina invasion in San Francisco bay marshes , 2006 .

[138]  Jeff Dozier,et al.  A clear‐sky spectral solar radiation model for snow‐covered mountainous terrain , 1980 .

[139]  Marco Franchini,et al.  Physical interpretation and sensitivity analysis of the TOPMODEL , 1996 .

[140]  R. M. Wallace,et al.  Terrain Analysis Using Digital Elevation Models , 2001 .