Patterning of octadecylsiloxane self-assembled monolayers on Si(100) using Ar(3P0,2) atoms

We report the use of metastable Ar(3P0,2) atoms and a physical mask to pattern octadecylsiloxane self-assembled monolayers grown directly on silicon surfaces. The damage to the monolayer is confirmed using lateral force microscopy, changes in hydrophilicity, and x-ray photoelectron spectroscopy analysis. Metastable atom exposures sufficient to uniformly damage the monolayer should allow pattern transfer to the underlying Si(100) substrate following chemical and plasma etching. With optical manipulation of the incident metastable atoms, this technique could provide the basis for massively parallel nanoscale fabrication on silicon.

[1]  Chu,et al.  Localization of metastable atom beams with optical standing waves: nanolithography at the heisenberg limit , 1998, Science.

[2]  G. Whitesides,et al.  Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer , 1997 .

[3]  George M. Whitesides,et al.  Self-assembled monolayers exposed by metastable argon and metastable helium for neutral atom lithography and atomic beam imaging , 1997 .

[4]  H. Craighead,et al.  High-selectivity pattern transfer processes for self-assembled monolayer electron beam resists , 1997 .

[5]  G. Whitesides,et al.  Using neutral metastable argon atoms and contamination lithography to form nanostructures in silicon, silicon dioxide, and gold , 1996, Photonics West.

[6]  H. Craighead,et al.  Improved electron‐beam patterning of Si with self‐assembled monolayers , 1996 .

[7]  H. Craighead,et al.  Electron-Beam-Induced Damage in Self-Assembled Monolayers , 1996 .

[8]  J. Mlynek,et al.  Nanolithography with metastabile helium , 1996 .

[9]  K. Birkelund,et al.  Optical near‐field lithography on hydrogen‐passivated silicon surfaces , 1996 .

[10]  Jabez J. McClelland,et al.  Nanostructure fabrication via laser-focused atomic deposition (invited) , 1996 .

[11]  P. So,et al.  Investigation of dynamics of energy hopping by frequency-domain , 1996 .

[12]  C. Schönenberger,et al.  Resistless high resolution optical lithography on silicon , 1995 .

[13]  Jabez J. McClelland,et al.  Atom-optical properties of a standing-wave light field , 1995 .

[14]  M. Prentiss,et al.  Microlithography by using neutral metastable atoms and self-assembled monolayers , 1995, Science.

[15]  M. Müllenborn,et al.  Silicon nanostructures produced by laser direct etching , 1995 .

[16]  M. Rooks,et al.  Electron beam lithography with monolayers of alkylthiols and alkylsiloxanes , 1994 .

[17]  David L. Allara,et al.  An Intrinsic Relationship between Molecular Structure in Self-Assembled n-Alkylsiloxane Monolayers and Deposition Temperature , 1994 .

[18]  R. C. Tiberio,et al.  Self‐assembled monolayer electron‐beam resists on GaAs and SiO2 , 1993 .

[19]  M. Radmacher,et al.  From molecules to cells: imaging soft samples with the atomic force microscope. , 1992, Science.

[20]  H. Hotop,et al.  Measurement of yields for electron emission from surfaces upon impact of laser-excited Ar*(4p) and Kr*(5p) atoms , 1992 .

[21]  D. P. Kern,et al.  Point exposure distribution measurements for proximity correction in electron beam lithography on a sub‐100 nm scale , 1987 .

[22]  W. F. Parks,et al.  High flux beam source of thermal rare-gas metastable atoms , 1980 .