Mixtures of factor analysers for the analysis of high-dimensional data

[1]  A. Montanari,et al.  Heteroscedastic factor mixture analysis , 2010 .

[2]  Cinzia Viroli,et al.  Dimensionally Reduced Model-Based Clustering Through Mixtures of Factor Mixture Analyzers , 2010, J. Classif..

[3]  G. McLachlan,et al.  Mixtures of Factor Analyzers with Common Factor Loadings: Applications to the Clustering and Visualization of High-Dimensional Data , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Wei Pan,et al.  Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data , 2010, Bioinform..

[5]  Paul D. McNicholas,et al.  Parsimonious Gaussian mixture models , 2008, Stat. Comput..

[6]  G. Sanguinetti Dimensionality Reduction of Clustered Data Sets , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[8]  Geoffrey J. McLachlan,et al.  Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution , 2007, Comput. Stat. Data Anal..

[9]  T. Higuchi,et al.  ArrayCluster: an analytic tool for clustering, data visualization and module finder on gene expression profiles , 2006, Bioinform..

[10]  Danny Coomans,et al.  Clustering noisy data in a reduced dimension space via multivariate regression trees , 2006, Pattern Recognit..

[11]  Tomoyuki Higuchi,et al.  A mixed factors model for dimension reduction and extraction of a group structure in gene expression data , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..

[12]  C. Hennig Breakdown points for maximum likelihood estimators of location–scale mixtures , 2004, math/0410073.

[13]  Mark J. F. Gales,et al.  Factor analysed hidden Markov models for speech recognition , 2004, Comput. Speech Lang..

[14]  Geoffrey J. McLachlan,et al.  Modelling high-dimensional data by mixtures of factor analyzers , 2003, Comput. Stat. Data Anal..

[15]  P. Olsen,et al.  Modeling inverse covariance matrices by basis expansion , 2004, IEEE Transactions on Speech and Audio Processing.

[16]  Geoffrey J. McLachlan,et al.  A mixture model-based approach to the clustering of microarray expression data , 2002, Bioinform..

[17]  G. McLachlan,et al.  Finite Mixture Models , 2000, Wiley Series in Probability and Statistics.

[18]  Mark J. F. Gales,et al.  Semi-tied covariance matrices for hidden Markov models , 1999, IEEE Trans. Speech Audio Process..

[19]  Michael E. Tipping,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[20]  Bhuvana Ramabhadran,et al.  Factor analysis invariant to linear transformations of data , 1998, ICSLP.

[21]  Michael E. Tipping,et al.  Mixtures of Principal Component Analysers , 1997 .

[22]  Geoffrey E. Hinton,et al.  Modeling the manifolds of images of handwritten digits , 1997, IEEE Trans. Neural Networks.

[23]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[24]  Wei-Chien Chang On using Principal Components before Separating a Mixture of Two Multivariate Normal Distributions , 1983 .

[25]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  A. Montanari,et al.  Latent Classes of Objects and Variable Selection , 2008 .

[28]  J. Geweke,et al.  Interpreting the Likelihood Ratio Statistic in Factor Models When Sample Size is Small , 1980 .