Searching for the closest-pair in a query translate

We consider a range-search variant of the closest-pair problem. Let $\varGamma$ be a fixed shape in the plane. We are interested in storing a given set of $n$ points in the plane in some data structure such that for any specified translate of $\varGamma$, the closest pair of points contained in the translate can be reported efficiently. We present results on this problem for two important settings: when $\varGamma$ is a polygon (possibly with holes) and when $\varGamma$ is a general convex body whose boundary is smooth. When $\varGamma$ is a polygon, we present a data structure using $O(n)$ space and $O(\log n)$ query time, which is asymptotically optimal. When $\varGamma$ is a general convex body with a smooth boundary, we give a near-optimal data structure using $O(n \log n)$ space and $O(\log^2 n)$ query time. Our results settle some open questions posed by Xue et al. [SoCG 2018].

[1]  Pankaj K. Agarwal,et al.  Geometric Range Searching and Its Relatives , 2007 .

[2]  Ravi Janardan,et al.  Approximate Range Closest-Pair Search , 2018, CCCG.

[3]  Michiel H. M. Smid,et al.  Data structures for range-aggregate extent queries , 2008, Comput. Geom..

[4]  M. Sharir,et al.  State of the Union ( of Geometric Objects ) : A Review ∗ , 2007 .

[5]  Michiel H. M. Smid,et al.  On the power of the semi-separated pair decomposition , 2009, Comput. Geom..

[6]  Yufei Tao,et al.  Range aggregate processing in spatial databases , 2004, IEEE Transactions on Knowledge and Data Engineering.

[7]  Prosenjit Gupta,et al.  Algorithms for some intersection searching problems involving curved objects , 1993 .

[8]  Michiel Smid,et al.  Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.

[9]  Sang Won Bae,et al.  Closest-Pair Queries in Fat Rectangles , 2018, Comput. Geom..

[10]  W ShorPeter,et al.  Applications of random sampling in computational geometry, II , 1989 .

[11]  Jie Xue,et al.  Colored range closest-pair problem under general distance functions , 2018, SODA.

[12]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[13]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[14]  Prosenjit Gupta Range-Aggregate Proximity Queries , 2007 .

[15]  Hee-Kap Ahn,et al.  Approximate Range Queries for Clustering , 2018, SoCG.

[16]  Timothy M. Chan,et al.  Optimal halfspace range reporting in three dimensions , 2009, SODA.

[17]  Jing Shan,et al.  On Spatial-Range Closest-Pair Query , 2003, SSTD.

[18]  Mark de Berg,et al.  Range-Clustering Queries , 2017, Symposium on Computational Geometry.

[19]  Prosenjit Gupta Range-Aggregate Query Problems Involving Geometric Aggregation Operations , 2006, Nord. J. Comput..

[20]  Sunil Arya,et al.  Approximate range searching , 1995, SCG '95.

[21]  Leonidas J. Guibas,et al.  On Computing All North-East Nearest Neighbors in the L1 Metric , 1983, Inf. Process. Lett..

[22]  Robert E. Tarjan,et al.  Planar point location using persistent search trees , 1986, CACM.

[23]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[24]  Yannis Manolopoulos,et al.  Closest pair queries in spatial databases , 2000, SIGMOD '00.

[25]  Yuan Li,et al.  New Bounds for Range Closest-Pair Problems , 2017, Discrete & Computational Geometry.