Schmidt-Kalman Filter with Polynomial Chaos Expansion for State Estimation
暂无分享,去创建一个
[1] R. Bhattacharya,et al. Nonlinear Estimation of Hypersonic State Trajectories in Bayesian Framework with Polynomial Chaos , 2010 .
[2] Robert J. Elliott,et al. Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.
[3] Zhihua Wang,et al. Schmidt-Kalman Filter for Navigation Biases Mitigation during Mars Entry , 2015 .
[4] S. F. Schmidt,et al. Application of State-Space Methods to Navigation Problems , 1966 .
[5] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[7] Adrian Sandu,et al. A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems , 2010 .
[8] Moriba Jah,et al. Unscented Schmidt–Kalman Filter Algorithm , 2015 .
[9] J. Junkins,et al. On the Consider Kalman Filter , 2010 .
[10] Matthew D. Eaton,et al. Propagation of input model uncertainties with different marginal distributions using a hybrid polynomial chaos expansion , 2014 .
[11] H. Elman,et al. DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .
[12] Byron D. Tapley,et al. Chapter 4 – Fundamentals of Orbit Determination , 2004 .
[13] Andrew G. Dempster,et al. GPS-based onboard real-time orbit determination for leo satellites using consider Kalman filter , 2016, IEEE Transactions on Aerospace and Electronic Systems.
[14] M. Eldred,et al. Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .
[15] Nilay Shah,et al. Metamodelling with independent and dependent inputs , 2013, Comput. Phys. Commun..
[16] Bob E. Schutz,et al. Consider Covariance Analysis , 2004 .
[17] T. Singh,et al. Polynomial-chaos-based Bayesian approach for state and parameter estimations , 2013 .
[18] Jay W. McMahon,et al. Square-Root Unscented Schmidt–Kalman Filter , 2018 .
[19] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[20] Anne Dutfoy,et al. A generalization of the Nataf transformation to distributions with elliptical copula , 2009 .
[21] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[22] James S. McCabe,et al. The Gaussian Mixture Consider Kalman Filter , 2016 .
[23] M. Lemaire,et al. Stochastic finite element: a non intrusive approach by regression , 2006 .
[24] Renato Zanetti,et al. Recursive Implementations of the Schmidt-Kalman ‘Consider’ Filter , 2013 .
[25] Dongbin Xiu,et al. A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..
[26] Ming Xin,et al. Sparse-grid quadrature nonlinear filtering , 2012, Autom..
[27] John L. Junkins,et al. Considering Measurement Model Parameter Errors in Static and Dynamic Systems , 2011 .