An Exemplar Model for Learning Object Classes

We introduce an exemplar model that can learn and generate a region of interest around class instances in a training set, given only a set of images containing the visual class. The model is scale and translation invariant. In the training phase, image regions that optimize an objective function are automatically located in the training images, without requiring any user annotation such as bounding boxes. The objective function measures visual similarity between training image pairs, using the spatial distribution of both appearance patches and edges. The optimization is initialized using discriminative features. The model enables the detection (localization) of multiple instances of the object class in test images, and can be used as a precursor to training other visual models that require bounding box annotation. The detection performance of the model is assessed on the PASCAL Visual Object Classes Challenge 2006 test set. For a number of object classes the performance far exceeds the current state of the art of fully supervised methods.

[1]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[4]  Y.Y. Boykov,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[5]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[6]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[8]  Stefan Carlsson,et al.  Appearance Based Qualitative Image Description for Object Class Recognition , 2004, ECCV.

[9]  Pietro Perona,et al.  A sparse object category model for efficient learning and exhaustive recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Guillaume Bouchard,et al.  Hierarchical part-based visual object categorization , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  Andrew Zisserman,et al.  OBJ CUT , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Nebojsa Jojic,et al.  LOCUS: learning object classes with unsupervised segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[14]  Andrew Blake,et al.  Contour-based learning for object detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[15]  Bernt Schiele,et al.  An Evaluation of Local Shape-Based Features for Pedestrian Detection , 2005, BMVC.

[16]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  C. Schmid,et al.  Object Class Recognition Using Discriminative Local Features , 2005 .

[18]  Daphna Weinshall,et al.  Efficient Learning of Relational Object Class Models , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[19]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[20]  Cordelia Schmid,et al.  Object Localization by Subspace Clustering of Local Descriptors , 2006, ICVGIP.

[21]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[22]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[23]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Andrew Zisserman,et al.  Incremental learning of object detectors using a visual shape alphabet , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[25]  Bernt Schiele,et al.  Multiple Object Class Detection with a Generative Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  Cordelia Schmid,et al.  Spatial Weighting for Bag-of-Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).