Thermal characterization of eutectic alloy thermal interface materials with void-like inclusions

Void formation and growth is a major problem for solder interface materials, because they impede heat conduction from the silicon die to heat spreader/heat sink in semiconductor electronic devices. This work uses infrared microscopy to measure temperature distributions on the interfacial layer through the silicon die. Hot spots, with a 15 /spl deg/C temperature rise above average die temperature, are found right on top of void-like inclusions at a device power density above 50 W/cm/sup 2/. The technique presented in the manuscript, with a theoretical spatial resolution of 3-5/spl mu/m, is promising for thermal characterization of voids in interface solder layers.

[1]  D.C. Katsis,et al.  A finite element modeling of dynamic hot spot effects in MOSFET dies due to voiding in the solder die-attach , 2003, IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03..

[2]  Masazumi Amagai,et al.  Mechanical reliability in electronic packaging , 2002, Microelectron. Reliab..

[3]  Wolfgang Fichtner,et al.  Modelling thermal effects of large contiguous voids in solder joints , 1999 .

[4]  M. C. Shaw,et al.  Thermomechatronics of power electronic packages , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[5]  Chia-Pin Chiu,et al.  Characterization of solder interfaces using laser flash metrology , 2002, Microelectron. Reliab..

[6]  J.D. van Wyk,et al.  Experimental measurement and simulation of thermal performance due to aging in power semiconductor devices , 2002, Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344).

[7]  S. Haque,et al.  Characterization of interfacial thermal resistance by acoustic micrography imaging , 2000 .

[8]  N. Zhu,et al.  Thermal impact of solder voids in the electronic packaging of power devices , 1999, Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.99CH36306).

[9]  Joseph R. Davis Nondestructive evaluation and quality control , 1989 .

[10]  W. R. Runyan Silicon Semiconductor Technology , 1965 .

[11]  K. Chang,et al.  Optical Properties of SiC , 1993 .

[12]  M. Rencz,et al.  Determining partial thermal resistances with transient measurements, and using the method to detect die attach discontinuities , 2002, Eighteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Proceedings 2002 (Cat.No.02CH37311).

[13]  Allen R. Hefner,et al.  A high-speed thermal imaging system for semiconductor device analysis , 2001, Seventeenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.01CH37189).

[14]  Ravi Prasher,et al.  Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials , 2001 .

[15]  Ralph Remsburg Thermal Design of Electronic Equipment , 2000 .

[16]  Katsuo Kurabayashi,et al.  Precision measurement and mapping of die-attach thermal resistance , 1998 .

[17]  D. Chung Thermal interface materials , 2001, Electric and Hybrid Vehicle Technology International.

[18]  Ali Shakouri,et al.  Through the substrate, backside thermal measurements on active semiconductor devices using near IR thermoreflectance , 2003, Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003..

[19]  D. M. Trujillo,et al.  A general thermal contact resistance finite element , 2002 .