Geolocation with FDOA measurements via polynomial systems and RANSAC

The problem of geolocation of a radio-frequency transmitter via time difference of arrival (TDOA) and frequency difference of arrival (FDOA) is given as a system of polynomial equations. This allows for the use of homotopy continuation-based methods from numerical algebraic geometry. A novel geolocation algorithm employs numerical algebraic geometry techniques in conjunction with the random sample consensus (RANSAC) method. This is all developed and demonstrated in the setting of only FDOA measurements, without loss of generality. Additionally, the problem formulation as polynomial systems immediately provides lower bounds on the number of receivers or measurements required for the solution set to consist of only isolated points.