The expected number of real roots of a multihomogeneous system of polynomial equations
暂无分享,去创建一个
[1] Michiel Hazewinkel,et al. Handbook of algebra , 1995 .
[2] Vi︠a︡cheslav Leonidovich Girko,et al. Theory of random determinants , 1990 .
[3] N. Steenrod. Topology of Fibre Bundles , 1951 .
[4] G. Egorychev. Van der Waerden Conjecture and Applications , 1996 .
[5] Andrew McLennan,et al. The maximum number of real roots of a multihomogeneous system of polynomial equations. , 1999 .
[6] Alan Edelman,et al. How many zeros of a random polynomial are real , 1995 .
[7] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[8] A. Khovanskii. Newton polyhedra and the genus of complete intersections , 1978 .
[9] G. Ewald. Combinatorial Convexity and Algebraic Geometry , 1996 .
[10] S. Smale,et al. Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .
[11] Andrew McLennan,et al. The Maximal Number of Regular Totally Mixed Nash Equilibria , 1997 .
[12] H. Fédérer. Geometric Measure Theory , 1969 .
[13] J. M. Rojas,et al. On the Average Number of Real Roots of Certain Random Sparse Polynomial Systems , 1996 .
[14] K. Farahmand. On the Average Number of Real Roots of a Random Algebraic Equation , 1986 .
[15] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[16] E. Kostlan. On the Distribution of Roots of Random Polynomials , 1993 .
[17] George Polya,et al. On the Roots of Certain Algebraic Equations , 1932 .
[18] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.