Top mass from asymptotic safety

Abstract We discover that asymptotically safe quantum gravity could predict the top-quark mass. For a broad range of microscopic gravitational couplings, quantum gravity could provide an ultraviolet completion for the Standard Model by triggering asymptotic freedom in the gauge couplings and bottom Yukawa and asymptotic safety in the top-Yukawa and Higgs-quartic coupling. We find that in a part of this range, a difference of the top and bottom mass of approximately 170 GeV is generated and the Higgs mass is determined in terms of the top mass. Assuming no new physics below the Planck scale, we construct explicit Renormalization Group trajectories for Standard Model and gravitational couplings which link the transplanckian regime to the electroweak scale and yield a top pole mass of M t,pole ≈ 171 GeV .

[1]  R. Percacci,et al.  Erratum: Asymptotic safety in an interacting system of gravity and scalar matter [Phys. Rev. D 93, 044049 (2016)] , 2016 .

[2]  H. Gies,et al.  Higgs mass bounds from renormalization flow for a Higgs–top–bottom model , 2014, 1407.8124.

[3]  A. Sirlin,et al.  Mass of the Higgs Boson in the Canonical Realization of the Salam-Weinberg Theory , 1984 .

[4]  H. Stuben,et al.  Is there a Landau pole problem in QED , 1997, hep-th/9712244.

[5]  Christoph Rahmede,et al.  Renormalization group flow in scalar-tensor theories: II , 2009, 0911.0394.

[6]  Daniel Becker,et al.  En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions , 2014, 1404.4537.

[7]  M. Lindner Implications of triviality for the standard model , 1986 .

[8]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[9]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[10]  L. Zambelli,et al.  Gravitational corrections to Yukawa systems , 2009, 0904.0938.

[11]  J. Jurkiewicz,et al.  Nonperturbative quantum gravity , 2012, 1203.3591.

[12]  H. Gies,et al.  Renormalization flow of QED. , 2004, Physical review letters.

[13]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[14]  How to Get an Upper Bound on the Higgs Mass , 1983 .

[15]  Peter Labus,et al.  Asymptotic safety in an interacting system of gravity and scalar matter , 2015, 1512.01589.

[16]  A. Eichhorn,et al.  Quantum gravity and Standard-Model-like fermions , 2016, 1611.05878.

[17]  G. Parisi,et al.  Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories , 1979 .

[18]  D. J. Callaway Non-triviality of gauge theories with elementary scalars and upper bounds on Higgs masses , 1984 .

[19]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[20]  K. Riesselmann,et al.  Matching conditions and Higgs mass upper bounds revisited , 1996, hep-ph/9610272.

[21]  Astrid Eichhorn,et al.  An asymptotically safe solution to the U(1) triviality problem , 2017, 1702.07724.

[22]  G. Parisi,et al.  Bounds on the number and masses of quarks and leptons , 1978 .

[23]  M. Yamada,et al.  Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity , 2015, 1510.03734.

[24]  M. Gell-Mann,et al.  QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES , 1954 .

[25]  Frank Saueressig,et al.  Renormalization group fixed points of foliated gravity-matter systems , 2017, 1702.06539.

[26]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity-matter systems , 2015, 1510.07018.

[27]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[28]  Yue Shen,et al.  Upper bound on the Higgs-boson mass in the standard model. , 1988 .

[29]  Peter Labus,et al.  Asymptotic safety in $O(N)$ scalar models coupled to gravity , 2015, 1505.05393.

[30]  GAUGE HIERARCHY DUE TO STRONG INTERACTIONS , 1981 .

[31]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[32]  Martin Reuter,et al.  Running gauge coupling in asymptotically safe quantum gravity , 2009, 0910.4938.

[33]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[34]  Holger Gies,et al.  Gravitational Two-Loop Counterterm Is Asymptotically Safe. , 2016, Physical review letters.

[35]  M. Dejardin,et al.  Measurement of the top quark mass using proton-proton data at √s=7 and 8 TeV , 2016 .

[36]  Astrid Eichhorn,et al.  Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario , 2012, 1204.0965.

[37]  Jan M. Pawlowski,et al.  Quantum-gravity effects on a Higgs-Yukawa model , 2016, 1604.02041.

[38]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[39]  S. Bornholdt,et al.  Self-organizing criticality, large anomalous mass dimension and the gauge hierarchy problem , 1992 .

[40]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[41]  Jan M. Pawlowski,et al.  Asymptotic freedom of Yang–Mills theory with gravity , 2011, 1101.5552.

[42]  Roberto Percacci,et al.  Renormalization group flow in scalar-tensor theories: I , 2009, 0911.0386.

[43]  Hempfling,et al.  Relation between the fermion pole mass and MS-bar Yukawa coupling in the standard model. , 1994, Physical review. D, Particles and fields.

[44]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[45]  Mikhail Shaposhnikov,et al.  Asymptotic safety of gravity and the Higgs-boson mass , 2009, 0912.0208.

[46]  J. T. Childers,et al.  Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments , 2015, 1503.07589.

[47]  Astrid Eichhorn,et al.  Light fermions in quantum gravity , 2011, 1104.5366.

[48]  Martin Reuter,et al.  QED coupled to QEG , 2011, 1101.6007.

[49]  J. Pawlowski,et al.  Chiral fermions in asymptotically safe quantum gravity , 2016, The European Physical Journal C.

[50]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .