Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition
暂无分享,去创建一个
[1] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[2] Steffen Dereich,et al. Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..
[3] Fred J. Hickernell,et al. Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..
[4] Joseph F. Traub,et al. Complexity and information , 1999, Lezioni Lincee.
[5] Jan Baldeaux,et al. Scrambled polynomial lattice rules for infinite-dimensional integration , 2010, 1010.6122.
[6] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[7] Henryk Wozniakowski,et al. Liberating the dimension , 2010, J. Complex..
[8] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[9] Grzegorz W. Wasilkowski,et al. Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..
[10] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[11] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[12] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[13] Michael B. Giles,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[14] H. Wozniakowski,et al. On tractability of path integration , 1996 .
[15] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .
[16] A. Owen,et al. Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .
[17] Michael Gnewuch,et al. Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms , 2012, ArXiv.
[18] F. Pillichshammer,et al. Digital Nets and Sequences: Nets and sequences , 2010 .
[19] Michael Gnewuch,et al. Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence , 2012, Found. Comput. Math..
[20] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[21] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[22] Henryk Wozniakowski,et al. On decompositions of multivariate functions , 2009, Math. Comput..
[23] Fred J. Hickernell,et al. Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..
[24] Frances Y. Kuo,et al. The smoothing effect of integration in Rd and the ANOVA decomposition , 2013, Math. Comput..
[25] Henryk Wozniakowski,et al. Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.
[26] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[27] D. Hunter. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .
[28] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[29] Harald Niederreiter,et al. Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .
[30] Michael Gnewuch,et al. On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..
[31] Josef Dick,et al. A construction of polynomial lattice rules with small gain coefficients , 2011, Numerische Mathematik.
[32] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[33] W. Schachermayer,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[34] Frances Y. Kuo,et al. The smoothing effect of the ANOVA decomposition , 2010, J. Complex..
[35] Frances Y. Kuo,et al. Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..
[36] Ben Niu,et al. Deterministic Multi-level Algorithms for Infinite-dimensional Integration on {$\mathbb{R}^{\mathbb{N}}$} , 2010 .
[37] H. Woxniakowski. Information-Based Complexity , 1988 .
[38] Stefan Heinrich,et al. Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..