Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition

In this paper, we consider the infinite-dimensional integration problem on weighted reproducing kernel Hilbert spaces with norms induced by an underlying function space decomposition of analysis of variance type. The weights model the relative importance of different groups of variables. We present new randomized multilevel algorithms to tackle this integration problem and prove upper bounds for their randomized error. Furthermore, we provide in this setting the first nontrivial lower error bounds for general randomized algorithms, which, in particular, may be adaptive or nonlinear. These lower bounds show that our multilevel algorithms are optimal. Our analysis refines and extends the analysis provided in [F. J. Hickernell, T. Muller-Gronbach, B. Niu, and K. Ritter, J. Complexity, 26 (2010), pp. 229--254], and our error bounds improve substantially on the error bounds presented there. As an illustrative example, we discuss the unanchored Sobolev space and employ randomized quasi--Monte Carlo multilevel a...

[1]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[2]  Steffen Dereich,et al.  Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..

[3]  Fred J. Hickernell,et al.  Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..

[4]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[5]  Jan Baldeaux,et al.  Scrambled polynomial lattice rules for infinite-dimensional integration , 2010, 1010.6122.

[6]  Fred J. Hickernell,et al.  The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..

[7]  Henryk Wozniakowski,et al.  Liberating the dimension , 2010, J. Complex..

[8]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[9]  Grzegorz W. Wasilkowski,et al.  Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..

[10]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[11]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[12]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[13]  Michael B. Giles,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[14]  H. Wozniakowski,et al.  On tractability of path integration , 1996 .

[15]  E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis , 1988 .

[16]  A. Owen,et al.  Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .

[17]  Michael Gnewuch,et al.  Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms , 2012, ArXiv.

[18]  F. Pillichshammer,et al.  Digital Nets and Sequences: Nets and sequences , 2010 .

[19]  Michael Gnewuch,et al.  Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence , 2012, Found. Comput. Math..

[20]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[21]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[22]  Henryk Wozniakowski,et al.  On decompositions of multivariate functions , 2009, Math. Comput..

[23]  Fred J. Hickernell,et al.  Strong tractability of integration using scrambled Niederreiter points , 2005, Math. Comput..

[24]  Frances Y. Kuo,et al.  The smoothing effect of integration in Rd and the ANOVA decomposition , 2013, Math. Comput..

[25]  Henryk Wozniakowski,et al.  Good Lattice Rules in Weighted Korobov Spaces with General Weights , 2006, Numerische Mathematik.

[26]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[27]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[28]  Michael Gnewuch,et al.  Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..

[29]  Harald Niederreiter,et al.  Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .

[30]  Michael Gnewuch,et al.  On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..

[31]  Josef Dick,et al.  A construction of polynomial lattice rules with small gain coefficients , 2011, Numerische Mathematik.

[32]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[33]  W. Schachermayer,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[34]  Frances Y. Kuo,et al.  The smoothing effect of the ANOVA decomposition , 2010, J. Complex..

[35]  Frances Y. Kuo,et al.  Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..

[36]  Ben Niu,et al.  Deterministic Multi-level Algorithms for Infinite-dimensional Integration on {$\mathbb{R}^{\mathbb{N}}$} , 2010 .

[37]  H. Woxniakowski Information-Based Complexity , 1988 .

[38]  Stefan Heinrich,et al.  Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..