Plasma Collision in a Gas Atmosphere.
暂无分享,去创建一个
L. Divol | S. Wilks | S. Le Pape | A. Kemp | J. Ross | G. Huser | R. Wallace | J. Katz
[1] R. A. D. Grundy,et al. Collisionless shock and supernova remnant simulations on VULCAN , 2001 .
[2] G. Huser,et al. Wall and laser spot motion in cylindrical hohlraums , 2009 .
[3] Richard L. Berger,et al. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facilitya) , 2009 .
[4] J. Ross,et al. A reflective image-rotating periscope for spatially resolved Thomson-scattering experiments on OMEGA , 2013 .
[5] Steven W. Haan,et al. Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .
[6] J. Myatt,et al. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited). , 2016, The Review of scientific instruments.
[7] K. Tanaka,et al. Aerosol Formation and Hydrogen Co-Deposition by Colliding Ablation Plasma Plumes of Carbon , 2011 .
[8] L. J. Atherton,et al. A high-resolution integrated model of the National Ignition Campaign cryogenic layered experimentsa) , 2012 .
[9] Jacques Denavit,et al. Collisionless plasma expansion into a vacuum , 1979 .
[10] P. Mora,et al. Plasma expansion into a vacuum. , 2003, Physical review letters.
[11] J. D. Kilkenny,et al. Charged-Particle Probing of X-ray–Driven Inertial-Fusion Implosions , 2010, Science.
[12] A. B. Langdon,et al. Stopping and thermalization of interpenetrating plasma streams , 1991 .
[13] P. Michel,et al. Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF) , 2018, Plasma Physics and Controlled Fusion.
[14] Brian J. Albright,et al. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling , 2015 .
[15] D H Froula,et al. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas. , 2007, Physical review letters.
[16] K. Tanaka,et al. Interpenetration and stagnation in colliding laser plasmas , 2014 .
[17] N. Woolsey,et al. High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers , 2008 .
[18] R. P. Drake,et al. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows , 2013, Nature Physics.
[19] Yuri Ralchenko,et al. Review of the NLTE kinetics code workshop , 1997 .
[20] O. Renner,et al. Kinetic to thermal energy transfer and interpenetration in the collision of laser-produced plasmas , 1997 .
[21] R. S. Craxton,et al. X-ray laser experiments using double foil nickel targets , 1990 .
[22] R. Morse,et al. Maximum expansion velocities of laser-produced plasmas , 1978 .
[23] J. D. Moody,et al. Implementation of a high energy 4ω probe beam on the Omega laser , 2004 .
[24] Daniel Casey,et al. The high velocity, high adiabat, ``Bigfoot'' campaign and tests of indirect-drive implosion scaling , 2017 .
[25] Baker,et al. Observation of Two Ion-Acoustic Waves in a Two-Species Laser-Produced Plasma with Thomson Scattering. , 1996, Physical review letters.
[26] Peter W. Rambo,et al. Interpenetration and ion separation in colliding plasmas , 1994 .
[27] L. Divol,et al. Suppression of stimulated brillouin scattering by increased landau damping in multiple-ion-species hohlraum plasmas. , 2008, Physical review letters.
[28] J. R. Rygg,et al. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa) , 2014 .
[29] M. Shoup,et al. A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA. , 2012, The Review of scientific instruments.
[30] J. J. MacFarlane. VISRAD—A 3-D view factor code and design tool for high-energy density physics experiments , 2003 .