Plasma Collision in a Gas Atmosphere.

We present a study on the impact of a gas atmosphere on the collision of two counterpropagating plasmas (gold and carbon). Imaging optical Thomson scattering data of the plasma collision with and without helium in between have been obtained at the Omega laser facility. Without gas, we observed large scale mixing of colliding gold and carbon ions. Once ambient helium is added, the two plasmas remain separated. The difference in ionic temperature is consistent with a reduction of the maximum Mach number of the flow from M=7 to M=4. It results in a reduction of a factor ∼10 of the counterstreaming ion-ion mean free path. By adding a low-density ambient gas, it is possible to control the collision of two high-velocity counterstreaming plasma, transitioning from an interpenetrating regime to a regime in agreement with a hydrodynamic description.

[1]  R. A. D. Grundy,et al.  Collisionless shock and supernova remnant simulations on VULCAN , 2001 .

[2]  G. Huser,et al.  Wall and laser spot motion in cylindrical hohlraums , 2009 .

[3]  Richard L. Berger,et al.  Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facilitya) , 2009 .

[4]  J. Ross,et al.  A reflective image-rotating periscope for spatially resolved Thomson-scattering experiments on OMEGA , 2013 .

[5]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[6]  J. Myatt,et al.  Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited). , 2016, The Review of scientific instruments.

[7]  K. Tanaka,et al.  Aerosol Formation and Hydrogen Co-Deposition by Colliding Ablation Plasma Plumes of Carbon , 2011 .

[8]  L. J. Atherton,et al.  A high-resolution integrated model of the National Ignition Campaign cryogenic layered experimentsa) , 2012 .

[9]  Jacques Denavit,et al.  Collisionless plasma expansion into a vacuum , 1979 .

[10]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[11]  J. D. Kilkenny,et al.  Charged-Particle Probing of X-ray–Driven Inertial-Fusion Implosions , 2010, Science.

[12]  A. B. Langdon,et al.  Stopping and thermalization of interpenetrating plasma streams , 1991 .

[13]  P. Michel,et al.  Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF) , 2018, Plasma Physics and Controlled Fusion.

[14]  Brian J. Albright,et al.  Use of external magnetic fields in hohlraum plasmas to improve laser-coupling , 2015 .

[15]  D H Froula,et al.  Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas. , 2007, Physical review letters.

[16]  K. Tanaka,et al.  Interpenetration and stagnation in colliding laser plasmas , 2014 .

[17]  N. Woolsey,et al.  High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers , 2008 .

[18]  R. P. Drake,et al.  Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows , 2013, Nature Physics.

[19]  Yuri Ralchenko,et al.  Review of the NLTE kinetics code workshop , 1997 .

[20]  O. Renner,et al.  Kinetic to thermal energy transfer and interpenetration in the collision of laser-produced plasmas , 1997 .

[21]  R. S. Craxton,et al.  X-ray laser experiments using double foil nickel targets , 1990 .

[22]  R. Morse,et al.  Maximum expansion velocities of laser-produced plasmas , 1978 .

[23]  J. D. Moody,et al.  Implementation of a high energy 4ω probe beam on the Omega laser , 2004 .

[24]  Daniel Casey,et al.  The high velocity, high adiabat, ``Bigfoot'' campaign and tests of indirect-drive implosion scaling , 2017 .

[25]  Baker,et al.  Observation of Two Ion-Acoustic Waves in a Two-Species Laser-Produced Plasma with Thomson Scattering. , 1996, Physical review letters.

[26]  Peter W. Rambo,et al.  Interpenetration and ion separation in colliding plasmas , 1994 .

[27]  L. Divol,et al.  Suppression of stimulated brillouin scattering by increased landau damping in multiple-ion-species hohlraum plasmas. , 2008, Physical review letters.

[28]  J. R. Rygg,et al.  Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa) , 2014 .

[29]  M. Shoup,et al.  A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA. , 2012, The Review of scientific instruments.

[30]  J. J. MacFarlane VISRAD—A 3-D view factor code and design tool for high-energy density physics experiments , 2003 .