Developing effective amphotericin B delivery systems for fungal infections

[1]  L. Applegate,et al.  Potency and stability of liposomal Amphotericin B formulated for topical management of Aspergillus spp. infections in burn patients , 2020, Burns Open.

[2]  F. Goycoolea,et al.  Development of Amphotericin B-loaded Propionate Sterculia striata Polysaccharide Nanocarrier. , 2019, International journal of biological macromolecules.

[3]  S. Tripathi,et al.  Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. , 2019, International journal of pharmaceutics.

[4]  Thilak K. Mudalige,et al.  Evaluation of size-based distribution of drug and excipient in amphotericin B liposomal formulation. , 2019, International journal of pharmaceutics.

[5]  A. Khamesipour,et al.  Development of a topical liposomal formulation of Amphotericin B for the treatment of cutaneous leishmaniasis , 2019, International journal for parasitology. Drugs and drug resistance.

[6]  K. Thanki,et al.  Improved oral bioavailability and gastro-intestinal stability of amphotericin B through fatty acid conjugation approach. , 2019, Molecular pharmaceutics.

[7]  J. C. Villamil,et al.  Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol , 2019, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[8]  Seongkyu Yoon,et al.  Critical process parameters in manufacturing of liposomal formulations of amphotericin B. , 2019, International journal of pharmaceutics.

[9]  D. A. da Silva,et al.  Nanocapsules of Sterculia striata acetylated polysaccharide as a potential monomeric amphotericin B delivery matrix. , 2019, International journal of biological macromolecules.

[10]  A. Khamesipour,et al.  Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmanicidal effects. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[11]  J. Qiu,et al.  Efficacy of Oral Encochleated Amphotericin B in a Mouse Model of Cryptococcal Meningoencephalitis , 2019, mBio.

[12]  Zhimei Song,et al.  Linolenic acid-modified methoxy poly (ethylene glycol)-oligochitosan conjugate micelles for encapsulation of amphotericin B. , 2019, Carbohydrate polymers.

[13]  Dairong Li,et al.  Synergistic Antifungal Effect of Amphotericin B-Loaded Poly(Lactic-Co-Glycolic Acid) Nanoparticles and Ultrasound against Candida albicans Biofilms , 2019, Antimicrobial Agents and Chemotherapy.

[14]  N. Khalil,et al.  Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery. , 2018, Carbohydrate polymers.

[15]  Jonathan Balk,et al.  The utility of therapeutic plasma exchange for amphotericin B overdose. , 2018, Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis.

[16]  R. Jain,et al.  Protective nature of low molecular weight chitosan in a chitosan-Amphotericin B nanocomplex - A physicochemical study. , 2018, Materials science & engineering. C, Materials for biological applications.

[17]  Z. Abdeen,et al.  Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis , 2018, Drug Delivery and Translational Research.

[18]  G. Barratt,et al.  In-vitro and in-vivo antileishmanial activity of inexpensive Amphotericin B formulations: Heated Amphotericin B and Amphotericin B-loaded microemulsion. , 2018, Experimental parasitology.

[19]  D. Scariot,et al.  Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity. , 2018, Experimental parasitology.

[20]  Sanyog Jain,et al.  Amphotericin B Loaded Chitosan Nanoparticles: Implication of Bile Salt Stabilization on Gastrointestinal Stability, Permeability and Oral Bioavailability , 2018, AAPS PharmSciTech.

[21]  A. Elaissari,et al.  Development and in vitro evaluation of cost effective amphotericin B polymeric emulsion , 2018 .

[22]  Shafiullah,et al.  Fabrication of lecithin-gum tragacanth muco-adhesive hybrid nano-carrier system for in-vivo performance of Amphotericin B. , 2018, Carbohydrate polymers.

[23]  R. Pontarolo,et al.  Cost‐effectiveness of amphotericin B formulations in the treatment of systemic fungal infections , 2018, Mycoses.

[24]  M. Rodrigues,et al.  Searching for a change: The need for increased support for public health and research on fungal diseases , 2018, PLoS neglected tropical diseases.

[25]  Michael J. Serpe,et al.  Dual alginate-lipid nanocarriers as oral delivery systems for amphotericin B. , 2018, Colloids and surfaces. B, Biointerfaces.

[26]  A. Jayakrishnan,et al.  Synthetic polymannose as a drug carrier: synthesis, toxicity and anti-fungal activity of polymannose-amphotericin B conjugates , 2018, Journal of biomaterials science. Polymer edition.

[27]  P. Das,et al.  Recent progress in drug targets and inhibitors towards combating leishmaniasis. , 2018, Acta tropica.

[28]  Murali Sandhya,et al.  Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections. , 2018, International journal of biological macromolecules.

[29]  F. Goycoolea,et al.  Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. , 2018, Colloids and surfaces. B, Biointerfaces.

[30]  A. Jayakrishnan,et al.  Amphotericin B‐albumin conjugates: Synthesis, toxicity and anti‐fungal activity , 2018, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[31]  Chirlie Silver,et al.  Comprehensive drug utilization review in neonates: liposomal amphotericin B , 2018, The Journal of pharmacy and pharmacology.

[32]  H. C. Paula,et al.  Hydrophobization of cashew gum by acetylation mechanism and amphotericin B encapsulation. , 2018, International journal of biological macromolecules.

[33]  H. Gendelman,et al.  Design of mannosylated oral amphotericin B nanoformulation: efficacy and safety in visceral leishmaniasis , 2018, Artificial cells, nanomedicine, and biotechnology.

[34]  A. Jayakrishnan,et al.  Synthesis and evaluation of anti-fungal activities of sodium alginate-amphotericin B conjugates. , 2017, International journal of biological macromolecules.

[35]  R. Jayakumar,et al.  Carboxymethylated ɩ-carrageenan conjugated amphotericin B loaded gelatin nanoparticles for treating intracellular Candida glabrata infections. , 2017, International journal of biological macromolecules.

[36]  Erik B. Erhardt,et al.  Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru , 2017, bioRxiv.

[37]  C. F. Rodrigues,et al.  Liposomal and Deoxycholate Amphotericin B Formulations: Effectiveness against Biofilm Infections of Candida spp. , 2017, Pathogens.

[38]  Felix Bongomin,et al.  Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision , 2017, Journal of fungi.

[39]  Pradeep Kumar,et al.  Recent advances in nanoparticle-mediated drug delivery , 2017 .

[40]  Ò. Domènech,et al.  Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis. , 2017, Nanomedicine : nanotechnology, biology, and medicine.

[41]  T. C. Moraes Moreira Carraro,et al.  Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. , 2017, Journal de mycologie medicale.

[42]  A. Jayakrishnan,et al.  Anti-fungal and anti-leishmanial activities of pectin-amphotericin B conjugates , 2017 .

[43]  Meiwan Chen,et al.  Design of amphotericin B oral formulation for antifungal therapy , 2017, Drug delivery.

[44]  N. Khalil,et al.  Exploring the Role of Nanoparticles in Amphotericin B Delivery. , 2016, Current pharmaceutical design.

[45]  A. Domb,et al.  Unique aggregation of conjugated amphotericin B and its interaction with lipid membranes , 2016, Medical mycology.

[46]  Qipeng Yuan,et al.  Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. , 2016, Microbial pathogenesis.

[47]  W. Gruszecki,et al.  Amphotericin B-silver hybrid nanoparticles: synthesis, properties and antifungal activity. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[48]  A. Tedesco,et al.  Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. , 2015, European journal of medicinal chemistry.

[49]  F. Frézard,et al.  Nanoemulsions loaded with amphotericin B: a new approach for the treatment of leishmaniasis. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[50]  P. Shukla,et al.  Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. , 2015, International journal of biological macromolecules.

[51]  Tetsuro Tanaka,et al.  Nanoparticles of hydrophobized cluster dextrin as biodegradable drug carriers: solubilization and encapsulation of amphotericin B , 2014 .

[52]  G. Barratt,et al.  Development of oil-in-water microemulsions for the oral delivery of amphotericin B. , 2013, International journal of pharmaceutics.

[53]  M. Dea-Ayuela,et al.  Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. , 2013, International journal of pharmaceutics.

[54]  Meiwan Chen,et al.  Development of Amphotericin B-Loaded Cubosomes Through the SolEmuls Technology for Enhancing the Oral Bioavailability , 2012, AAPS PharmSciTech.

[55]  A. Elhissi,et al.  Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. , 2012, International journal of pharmaceutics.

[56]  H. Yadav,et al.  DIFFERENT TECHNIQUES FOR PREPARATION OF POLYMERIC NANOPARTICLES-A , 2012 .

[57]  M. Prato,et al.  Antifungal activity of amphotericin B conjugated to carbon nanotubes. , 2011, ACS nano.

[58]  A. Domb,et al.  Galactomannan–amphotericin B conjugate: synthesis and biological activity , 2011 .

[59]  M. Amini,et al.  Development of respirable nanomicelle carriers for delivery of amphotericin B by jet nebulization. , 2011, Journal of pharmaceutical sciences.

[60]  S. Sheikh,et al.  Nanosomal Amphotericin B is an efficacious alternative to Ambisome for fungal therapy. , 2010, International journal of pharmaceutics.

[61]  A. Hoffman,et al.  Polysaccharide pharmacokinetics: amphotericin B arabinogalactan conjugate-a drug delivery system or a new pharmaceutical entity? , 2010, Biomacromolecules.

[62]  I. Gilbert,et al.  N-(2-hydroxypropyl)methacrylamide–amphotericin B (HPMA–AmB) copolymer conjugates as antileishmanial agents , 2009, International journal of antimicrobial agents.

[63]  J. Cleary,et al.  Evidence that impurities contribute to the fluorescence of the polyene antibiotic amphotericin B. , 2009, The Journal of antimicrobial chemotherapy.

[64]  Christine Vauthier,et al.  Methods for the Preparation and Manufacture of Polymeric Nanoparticles , 2009, Pharmaceutical Research.

[65]  R. Cannon,et al.  Candida albicans drug resistance another way to cope with stress. , 2007, Microbiology.

[66]  G. Barratt,et al.  Optimizing efficacy of Amphotericin B through nanomodification , 2007, International journal of nanomedicine.

[67]  W. Tiyaboonchai,et al.  Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. , 2007, International journal of pharmaceutics.

[68]  P. Loiseau,et al.  Amphotericin B-Gum Arabic Conjugates: Synthesis, Toxicity, Bioavailability, and Activities Against Leishmania and Fungi , 2007, Pharmaceutical Research.

[69]  E. Carreira,et al.  Amphotericin B: 50 Years of Chemistry and Biochemistry , 2006 .

[70]  J. Golenser,et al.  Impact of aldehyde content on amphotericin B-dextran imine conjugate toxicity. , 2006, Biomacromolecules.

[71]  J. Golenser,et al.  Conjugation of amino-containing drugs to polysaccharides by tosylation: amphotericin B-arabinogalactan conjugates. , 2004, Biomaterials.

[72]  D. Bizzotto,et al.  Effect of Heat-Treated Amphotericin B on Renal and Fungal Cytotoxicity , 2004, Antimicrobial Agents and Chemotherapy.

[73]  V. Yardley,et al.  Toxicity and Antileishmanial Activity of a New Stable Lipid Suspension of Amphotericin B , 2003, Antimicrobial Agents and Chemotherapy.

[74]  J. Golenser,et al.  Synthesis and characterization of novel water soluble amphotericin B-arabinogalactan conjugates. , 2002, Biomaterials.

[75]  Sung‐Wook Choi,et al.  Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method , 2001 .

[76]  A. Domb,et al.  A Novel Injectable Water-Soluble Amphotericin B-Arabinogalactan Conjugate , 1999, Antimicrobial Agents and Chemotherapy.

[77]  M. Alonso,et al.  Investigation of a pMDI system containing chitosan microspheres and P134a , 1998 .

[78]  I. Bekersky,et al.  AmBisome (Liposomal Amphotericin B): A Comparative Review , 1998, Journal of clinical pharmacology.

[79]  M. Alonso,et al.  Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers , 1997 .

[80]  M. Prieto,et al.  Absorption and fluorescence spectra of polyene antibiotics in the presence of cholesterol. , 1992, The Journal of biological chemistry.

[81]  J. Bolard How do the polyene macrolide antibiotics affect the cellular membrane properties? , 1986, Biochimica et biophysica acta.