Predicting New TiO2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach

TiO2 has been extensively studied due to the possible application in solar cells and photoelectrochemical (PEC) water-splitting. However, the energy conversion efficiency is rather low because of the large band gaps (larger than 3.0 eV) of rutile and anatase TiO2. Here we introduce the multiobjective differential evolution (MODE) method as a novel global optimization algorithm to predict new polymorphs of bulk TiO2 with better optical properties than rutile and anatase TiO2. The band gaps of the new PI (Pnma) and CI (C2) phases are found to be 1.95 and 2.64 eV. The calculation of formation energy, phonon dispersions, and thermal stability shows that the two novel phases are dynamically and thermally stable. These new TiO2 polymorphs with better electronic and optical properties may pave a new way for high-efficiency solar energy conversion.

[1]  Y. Tezuka,et al.  Photoemission and Bremsstrahlung Isochromat Spectroscopy Studies of TiO2 (Rutile) and SrTiO3 , 1994 .

[2]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[3]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[4]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[5]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[6]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[7]  B. Ahn,et al.  Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells , 2011 .

[8]  Xiaojun Wu,et al.  Predicting two-dimensional boron-carbon compounds by the global optimization method. , 2011, Journal of the American Chemical Society.

[9]  J. Nowotny,et al.  Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions , 2002 .

[10]  H. Abbass,et al.  PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[11]  R. Ahuja,et al.  Cubic TiO2 as a potential light absorber in solar-energy conversion , 2004 .

[12]  Arthur C. Sanderson,et al.  Pareto-based multi-objective differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[13]  J. Pannetier,et al.  Prediction of crystal structures from crystal chemistry rules by simulated annealing , 1990, Nature.

[14]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[15]  R. Needs,et al.  When is H2O not water? , 2007, The Journal of chemical physics.

[16]  R. Ahuja,et al.  Materials science: The hardest known oxide , 2001, Nature.

[17]  R. Ahuja,et al.  High-pressure and high-temperature synthesis of the cubic TiO2 polymorph , 2004 .

[18]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[19]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[20]  Guang-jun Liu,et al.  Interfacial Charge Transfer and Enhanced Photocatalytic Mechanisms for the Hybrid Graphene/Anatase TiO2(001) Nanocomposites , 2013 .

[21]  Zhanghui Chen,et al.  PDECO: Parallel differential evolution for clusters optimization , 2013, J. Comput. Chem..

[22]  Su-Huai Wei,et al.  Towards direct-gap silicon phases by the inverse band structure design approach. , 2013, Physical review letters.

[23]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[24]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[25]  Yanming Ma,et al.  First-principles structural design of superhard materials. , 2013, The Journal of chemical physics.

[26]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[27]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[28]  X. Gong,et al.  What are grain boundary structures in graphene? , 2013, Nanoscale.

[29]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[30]  M. Batzill,et al.  A two-dimensional phase of TiO₂ with a reduced bandgap. , 2011, Nature chemistry.

[31]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..