Total internal reflection-based side-pumping configuration for terawatt ultraviolet amplifier and laser oscillator development
暂无分享,去创建一个
Minh Hong Pham | Toshihiko Shimizu | Tsuguo Fukuda | Melvin John F. Empizo | Nobuhiko Sarukura | Kohei Yamanoi | Marilou Cadatal-Raduban | Hung Dai Nguyen | T. Fukuda | K. Yamanoi | Toshihiko Shimizu | N. Sarukura | M. Cadatal-Raduban | D. Pham | Duong Van Pham | Duong Thi Thuy Bui | Kohei Takeda | Luong Viet Mui | M. Empizo | K. Takeda | M. Pham | H. D. Nguyen
[1] Hiroshi Azechi,et al. First-principles calculations of electronic and optical properties of LiCaAlF 6 and LiSrAlF 6 crystals as VUV to UV solid-state laser materials , 2017 .
[2] A. Yoshikawa,et al. Laser Quality Ce3+:LiCaAlF6 Grown by Micro-Pulling-Down Method , 2008 .
[3] Leon Esterowitz,et al. Tunable solid-state laser action in Ce3+:LiSrAlF6 , 1994 .
[4] Minh Hong Pham,et al. Micro-pulling-down-method-grown Ce:LiCAF crystal for side-pumped laser amplifier , 2011 .
[5] T. Ishikawa,et al. Optical property of Ce3+-doped lutetium lithium fluoride for the short-wavelength device application , 2014 .
[6] H Ohtake,et al. Ultraviolet short pulses from an all-solid-state Ce:LiCAF master-oscillator power-amplifier system. , 1997, Optics letters.
[7] Minh Hong Pham,et al. Amplification of Ultraviolet Femtosecond Pulse by a Micro-Pulling Down Method-Grown Ce:LiCAF Crystal in a Prismatic Cell-Type, Side-Pumping Configuration , 2009 .
[8] Hiroki Sato,et al. Crystal growth of Ce-doped and undoped LiCaAlF6 by the Czochralski technique under CF4 atmosphere , 2001 .
[9] Shinichi Watanabe,et al. Multiterawatt Excimer Laser System , 1989, Short Wavelength Coherent Radiation: Generation and Applications.
[10] N Sarukura,et al. All-Solid-State Tunable Ultraviolet Subnanosecond Laser with Direct Pumping by the Fifth Harmonic of a Nd:YAG laser. , 1998, Applied optics.
[11] A. Yoshikawa,et al. Luminescence properties of Nd3+ and Er3+ doped glasses in the VUV region , 2013 .
[12] V. Semashko. Ultra-short pulses UV lasing in multifunctional Ce:LiY 0.3 Lu 0.7 F 4 active medium , 2016 .
[13] M. Kouno,et al. Er:LiCAF as Potential Vacuum Ultraviolet Laser Material at 163 nm , 2010, IEEE Transactions on Nuclear Science.
[14] S. Watanabe,et al. Terawatt XeCl discharge laser system. , 1988, Optics letters.
[15] Y Suzuki,et al. Chirped-pulse amplification of ultraviolet femtosecond pulses by use of Ce(3+):LiCaAlF(6) as a broadband, solid-state gain medium. , 2001, Optics letters.
[16] Yuji Suzuki,et al. High-energy pulse generation from solid-state ultraviolet lasers using large Ce:fluoride crystals , 2002 .
[17] Y. Kawazoe,et al. Comparison of the electronic band structures of LiCaAlF6 and LiSrAlF6 ultraviolet laser host media from ab initio calculations , 2015 .
[18] Tsuguo Fukuda,et al. High-Pulse-Energy, All-Solid-State, Ultraviolet Laser Oscillator Using Large Czochralski-Grown Ce:LiCAF Crystal , 1998 .
[19] Nan Yu,et al. Low-threshold ultraviolet solid-state laser based on a Ce3+:LiCaAlF6 crystal resonator. , 2012, Optics letters.
[20] K. Shimamura,et al. Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere , 2000 .
[21] A. K. Naumov,et al. Ce(3+):LuLiF(4) as a broadband ultraviolet amplification medium. , 1995, Optics letters.
[22] Y. Yokota,et al. Optical Characteristic Improvement of Neodymium-Doped Lanthanum Fluoride Thin Films Grown by Pulsed Laser Deposition for Vacuum Ultraviolet Application , 2012 .
[23] D. Yoon,et al. Design of laser-driven high-efficiency Al2O3/YAG:Ce3+ ceramic converter for automotive lighting: Fabrication, luminous emittance, and tunable color space , 2017 .
[24] A. Nizamutdinov,et al. Spectroscopic properties of UV active medium Ce3+:LiSr0.8Ca0.2AlF6 , 2016 .
[25] A. Yoshikawa,et al. Vacuum ultraviolet luminescence from a micro-pulling-down method grown Nd3+:(La0.9,Ba0.1)F2.9 , 2009 .
[26] Kenji Nakano,et al. Direct Generation of 27-mJ, 309-nm Pulses from a Ce3+:LiLuF4 Oscillator Using a Large-Size Ce3+:LiLuF4 Crystal , 2000 .
[27] Y. Yokota,et al. Significant blue-shift in photoluminescence excitation spectra of Nd3+:LaF3 potential laser medium at low-temperature , 2015 .
[28] Alexander K. Naumov,et al. Ce3+-doped colquiriite : a new concept of all-solid-state tunable ultraviolet laser , 1993 .
[29] Tadashi Itoh,et al. Ce/sup 3+/-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping , 1995 .
[30] M. Hirano,et al. Ce/sup 3+/:LiCaAlF/sub 6/ crystal for high-gain or high-peak-power amplification of ultraviolet femtosecond pulses and new potential ultraviolet gain medium: Ce/sup 3+/:LiSr/sub 0.8/Ca/sub 0.2/AlF/sub 6/ , 2001 .
[31] R. Byer,et al. Zigzag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression. , 2006, Applied optics.
[32] Minh Hong Pham,et al. Micro-pulling down method-grown Er3+:LiCaAlF6 as prospective vacuum ultraviolet laser material , 2013 .
[33] William F. Krupke,et al. Ultraviolet laser emission properties of Ce 3+ -doped LiSrAlF 6 and LiCaAlF 6 , 1994 .
[34] Young-Moon Yu,et al. Strong thermal stability of Lu 3 Al 5 O 12 :Ce 3+ single crystal phosphor for laser lighting , 2017 .
[35] Minh Hong Pham,et al. Numerical simulation of ultraviolet picosecond Ce:LiCAF laser emission by optimized resonator transients , 2014 .
[36] Jörg Neumann,et al. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding. , 2010, Optics express.
[37] D. Coutts,et al. Tunable continuous-wave deep-ultraviolet laser based on Ce:LiCAF. , 2014, Optics letters.
[38] T. Ishikawa,et al. Perovskite fluoride crystals as light emitting materials in vacuum ultraviolet region , 2014 .
[39] Y. Yokota,et al. Temperature-dependent evaluation of Nd:LiCAF optical properties as potential vacuum ultraviolet laser material , 2016 .