Total internal reflection-based side-pumping configuration for terawatt ultraviolet amplifier and laser oscillator development

A two-side-pumping scheme that is based on total internal reflection in a diamond-cut Ce3+:LiCaAlF6 crystal suitable for the development of an ultraviolet laser and femtosecond amplifier system is proposed. Experimental fluorescence images and lasing results that demonstrate total internal reflection of the excitation beam using this diamond-cut crystal are presented. Calculations for the optimized crystal geometry that facilitate high extraction efficiency and homogeneity of the absorbed excitation beam are also discussed. About 50% increase in extraction efficiency compared to previously reported chirped-pulse femtosecond ultraviolet amplifier operating at 50-GW peak power is expected using this total internal reflection-based two-side-pumping configuration and a diamond-cut Ce3+:LiCaAlF6 crystal with a geometry of $${\phi _1}$$ϕ1 = 103°, $${\phi _2}$$ϕ2 = $${\phi _4}$$ϕ4 = 82°, $${\phi _3}$$ϕ3 = 93°, a length of 1.23 cm, a height of 2 cm, and an absorption coefficient of ~ 1.5 cm−1. Our results can be used as a guide during the crystal growth process by providing the appropriate crystal geometry and size for a particular absorption coefficient to achieve high extraction efficiency. With the appropriate crystal combined with multiple-beam pumping afforded by the side-pumping scheme, the development of an all-solid-state ultraviolet laser operating at terawatt level would be within reach.

[1]  Hiroshi Azechi,et al.  First-principles calculations of electronic and optical properties of LiCaAlF 6 and LiSrAlF 6 crystals as VUV to UV solid-state laser materials , 2017 .

[2]  A. Yoshikawa,et al.  Laser Quality Ce3+:LiCaAlF6 Grown by Micro-Pulling-Down Method , 2008 .

[3]  Leon Esterowitz,et al.  Tunable solid-state laser action in Ce3+:LiSrAlF6 , 1994 .

[4]  Minh Hong Pham,et al.  Micro-pulling-down-method-grown Ce:LiCAF crystal for side-pumped laser amplifier , 2011 .

[5]  T. Ishikawa,et al.  Optical property of Ce3+-doped lutetium lithium fluoride for the short-wavelength device application , 2014 .

[6]  H Ohtake,et al.  Ultraviolet short pulses from an all-solid-state Ce:LiCAF master-oscillator power-amplifier system. , 1997, Optics letters.

[7]  Minh Hong Pham,et al.  Amplification of Ultraviolet Femtosecond Pulse by a Micro-Pulling Down Method-Grown Ce:LiCAF Crystal in a Prismatic Cell-Type, Side-Pumping Configuration , 2009 .

[8]  Hiroki Sato,et al.  Crystal growth of Ce-doped and undoped LiCaAlF6 by the Czochralski technique under CF4 atmosphere , 2001 .

[9]  Shinichi Watanabe,et al.  Multiterawatt Excimer Laser System , 1989, Short Wavelength Coherent Radiation: Generation and Applications.

[10]  N Sarukura,et al.  All-Solid-State Tunable Ultraviolet Subnanosecond Laser with Direct Pumping by the Fifth Harmonic of a Nd:YAG laser. , 1998, Applied optics.

[11]  A. Yoshikawa,et al.  Luminescence properties of Nd3+ and Er3+ doped glasses in the VUV region , 2013 .

[12]  V. Semashko Ultra-short pulses UV lasing in multifunctional Ce:LiY 0.3 Lu 0.7 F 4 active medium , 2016 .

[13]  M. Kouno,et al.  Er:LiCAF as Potential Vacuum Ultraviolet Laser Material at 163 nm , 2010, IEEE Transactions on Nuclear Science.

[14]  S. Watanabe,et al.  Terawatt XeCl discharge laser system. , 1988, Optics letters.

[15]  Y Suzuki,et al.  Chirped-pulse amplification of ultraviolet femtosecond pulses by use of Ce(3+):LiCaAlF(6) as a broadband, solid-state gain medium. , 2001, Optics letters.

[16]  Yuji Suzuki,et al.  High-energy pulse generation from solid-state ultraviolet lasers using large Ce:fluoride crystals , 2002 .

[17]  Y. Kawazoe,et al.  Comparison of the electronic band structures of LiCaAlF6 and LiSrAlF6 ultraviolet laser host media from ab initio calculations , 2015 .

[18]  Tsuguo Fukuda,et al.  High-Pulse-Energy, All-Solid-State, Ultraviolet Laser Oscillator Using Large Czochralski-Grown Ce:LiCAF Crystal , 1998 .

[19]  Nan Yu,et al.  Low-threshold ultraviolet solid-state laser based on a Ce3+:LiCaAlF6 crystal resonator. , 2012, Optics letters.

[20]  K. Shimamura,et al.  Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere , 2000 .

[21]  A. K. Naumov,et al.  Ce(3+):LuLiF(4) as a broadband ultraviolet amplification medium. , 1995, Optics letters.

[22]  Y. Yokota,et al.  Optical Characteristic Improvement of Neodymium-Doped Lanthanum Fluoride Thin Films Grown by Pulsed Laser Deposition for Vacuum Ultraviolet Application , 2012 .

[23]  D. Yoon,et al.  Design of laser-driven high-efficiency Al2O3/YAG:Ce3+ ceramic converter for automotive lighting: Fabrication, luminous emittance, and tunable color space , 2017 .

[24]  A. Nizamutdinov,et al.  Spectroscopic properties of UV active medium Ce3+:LiSr0.8Ca0.2AlF6 , 2016 .

[25]  A. Yoshikawa,et al.  Vacuum ultraviolet luminescence from a micro-pulling-down method grown Nd3+:(La0.9,Ba0.1)F2.9 , 2009 .

[26]  Kenji Nakano,et al.  Direct Generation of 27-mJ, 309-nm Pulses from a Ce3+:LiLuF4 Oscillator Using a Large-Size Ce3+:LiLuF4 Crystal , 2000 .

[27]  Y. Yokota,et al.  Significant blue-shift in photoluminescence excitation spectra of Nd3+:LaF3 potential laser medium at low-temperature , 2015 .

[28]  Alexander K. Naumov,et al.  Ce3+-doped colquiriite : a new concept of all-solid-state tunable ultraviolet laser , 1993 .

[29]  Tadashi Itoh,et al.  Ce/sup 3+/-activated fluoride crystals as prospective active media for widely tunable ultraviolet ultrafast lasers with direct 10-ns pumping , 1995 .

[30]  M. Hirano,et al.  Ce/sup 3+/:LiCaAlF/sub 6/ crystal for high-gain or high-peak-power amplification of ultraviolet femtosecond pulses and new potential ultraviolet gain medium: Ce/sup 3+/:LiSr/sub 0.8/Ca/sub 0.2/AlF/sub 6/ , 2001 .

[31]  R. Byer,et al.  Zigzag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression. , 2006, Applied optics.

[32]  Minh Hong Pham,et al.  Micro-pulling down method-grown Er3+:LiCaAlF6 as prospective vacuum ultraviolet laser material , 2013 .

[33]  William F. Krupke,et al.  Ultraviolet laser emission properties of Ce 3+ -doped LiSrAlF 6 and LiCaAlF 6 , 1994 .

[34]  Young-Moon Yu,et al.  Strong thermal stability of Lu 3 Al 5 O 12 :Ce 3+ single crystal phosphor for laser lighting , 2017 .

[35]  Minh Hong Pham,et al.  Numerical simulation of ultraviolet picosecond Ce:LiCAF laser emission by optimized resonator transients , 2014 .

[36]  Jörg Neumann,et al.  Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding. , 2010, Optics express.

[37]  D. Coutts,et al.  Tunable continuous-wave deep-ultraviolet laser based on Ce:LiCAF. , 2014, Optics letters.

[38]  T. Ishikawa,et al.  Perovskite fluoride crystals as light emitting materials in vacuum ultraviolet region , 2014 .

[39]  Y. Yokota,et al.  Temperature-dependent evaluation of Nd:LiCAF optical properties as potential vacuum ultraviolet laser material , 2016 .