Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy

The reflectance spectra of combinations of olivine, orthopyroxene, and iron meteorite metal show systematic variations in spectral properties which can be used to constrain many of the physical and chemical properties of the assemblages. The presence of metal most noticeably affects band area ratios, peak:peak and peak:minimum reflectance ratios, and band widths. These parameters are also affected to varying degrees by the abundance and grain size of the metal and silicates and the composition of the silicates. Band width and band areas are useful for determining metal abundance in olivine+metal and orthopyroxene+metal assemblages, respectively. Mafic silicate grain size variations are best determined using band depth criteria. Band centers are most useful for determining mafic silicate composition. Analysis of the reflectance spectrum of the S-class asteroid (8) Flora on the basis of these spectral parameters indicates a surface composed of approximately 50 wt % metal, 40 wt % olivine (Fa = 35±10), 10 wt % orthopyroxene (Fs = 30−25+35), and perhaps a few weight percent of clinopyroxene. A substantial amount of the surface seems to consist of a fine-grained (<45 μm size) component. Analysis of the reflectance spectrum of the A-class asteroid (446) Aeternitas suggests a surface assemblage of approximately 35 wt % metal, 55 wt % olivine (Fa = 20±10), 7 wt % clinopyroxene (Fs <17%), and 3 wt % orthopyroxene (Fs <45). A substantial fine-grained (<45 μm size) surface component is also indicated for this asteroid.

[1]  W. Runciman,et al.  The Polarized Spectra of Iron in Silicates: II. Olivine: A Reply , 1974 .

[2]  Dale P. Cruikshank,et al.  Reflectance spectroscopy and asteroid surface mineralogy , 1989 .

[3]  I. Shapiro,et al.  Mainbelt Asteroids: Dual-Polarization Radar Observations , 1985, Science.

[4]  E. Zukas Metallurgical results from shock‐loaded iron alloys applied to a meteorite , 1969 .

[5]  D. Matson,et al.  Visual and infrared photometry of asteroids , 1978 .

[6]  M. Gaffey Rotational spectral variations of asteroid (8) Flora: Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites , 1984 .

[7]  J. Veverka Polarimetric observations of 9 Metis, 15 Eunomia, 89 Julia, and other asteroids. , 1973 .

[8]  C. Chapman,et al.  Spectroscopic evidence for undifferentiated S-type asteroids , 1982 .

[9]  R. N. Clark,et al.  A LARGE-SCALE INTERACTIVE ONE-DIMENSIONAL ARRAY PROCESSING SYSTEM , 1980 .

[10]  M. F. Comerford Comparative erosion rates of stone and iron meteorites under small-particle bombardment , 1967 .

[11]  B. N. Powell Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships☆ , 1971 .

[12]  K. Keil Mineralogical and chemical relationships among enstatite chondrites , 1968 .

[13]  F. Huggins,et al.  Polarized absorption spectra of single crystals of lunar pyroxenes and olivines , 1972 .

[14]  Jack J. Hsia,et al.  Reflection properties of pressed polytetrafluoroethylene powder , 1981 .

[15]  H. Nagahara,et al.  Petrology of Yamato-791493, lodranite: Melting, crystallization, cooling history, and relationship to other meteorites , 1986 .

[16]  Audouin Dollfus,et al.  The nature of the M-type asteroids from optical polarimetry , 1979 .

[17]  C. Moore,et al.  Total carbon content of ordinary chondrites , 1967 .

[18]  D. Matson,et al.  The R asteroids reconsidered , 1983 .

[19]  William B. White,et al.  Selection rules and assignments for the spectra of ferrous iron in pyroxenes , 1967 .

[20]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[21]  C. Pieters Polarization in a Mineral Absorption Band , 1974 .

[22]  N. Fujii,et al.  Spectral reflectance (0.25-2.5 μm) of powdered olivines and meteorites and their bearing on surface materials of asteroids , 1981 .

[23]  A. Dollfus,et al.  Planetary surface texture and albedo from parameter plots of optical polarization data , 1986 .

[24]  Roger G. Burns,et al.  Crystal field spectra and evidence of cation ordering in olivine minerals , 1970 .

[25]  M. Gaffey,et al.  Reflectance spectra for 277 asteroids , 1979 .

[26]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[27]  A. Dollfus,et al.  The asteroid albedo scale. I - Laboratory polarimetry of meteorites , 1977 .

[28]  L. McFadden Spectral Reflectance of Near-Earth Asteroids: Implications for Composition, Origin and Evolution , 1983 .

[29]  S. Clark Absorption Spectra of Some Silicates in the Visible and Near Infrared , 1957 .

[30]  H. Mao,et al.  Effects of compositional variation on absorption spectra of lunar pyroxenes , 1978 .

[31]  John F. Mustard,et al.  Exploration of crustal/mantle material for the earth and moon using reflectance spectroscopy , 1988 .

[32]  R. Greenberg,et al.  Regolith development and evolution on asteroids and the moon , 1979 .

[33]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[34]  T. Watters,et al.  Aubrites - Their origin and relationship to enstatite chondrites , 1979 .

[35]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[36]  B. Zellner,et al.  Optical polarimetry of asteroids and laboratory samples , 1979 .

[37]  K. Housen,et al.  REGOLITHS ON SMALL BODIES IN THE SOLAR SYSTEM , 1982 .

[38]  W. Spicer,et al.  Experimental Determination of the Optical Density of States in Iron , 1967 .

[39]  John B. Adams,et al.  Lunar and Martian Surfaces: Petrologic Significance of Absorption Bands in the Near-Infrared , 1968, Science.

[40]  Torrence V. Johnson,et al.  Optical properties of carbonaceous chondrites and their relationship to asteroids , 1973 .

[41]  J. Salisbury,et al.  Comparisons of meteorite and asteroid spectral reflectivities , 1973 .

[42]  P. Robinson The composition space of terrestrial pyroxenes; internal and external limits , 1980 .

[43]  D. B. Nash,et al.  Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite , 1974 .

[44]  A. J. Easton GRAIN-SIZE DISTRIBUTION AND MORPHOLOGY OF METAL IN E-CHONDRITES , 1983 .

[45]  D. Morrison,et al.  Radiometry of asteroids , 1979 .

[46]  B. N. Powell Petrology and chemistry of mesosiderites—I. Textures and composition of nickel-iron , 1969 .

[47]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[48]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[49]  J. M. Rhodes,et al.  Mare basalts: Crystal chemistry, mineralogy, and petrology , 1976 .

[50]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[51]  T. McCord,et al.  Electronic spectra of pyroxenes and interpretation of telescopic spectral reflectivity curves of the moon. , 1972 .

[52]  J. Goldstein,et al.  The formation of phosphides in iron meteorites. , 1969 .

[53]  J. Veverka Photopolarimetric observations of the minor planet Flora. , 1971 .

[54]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[55]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .

[56]  E. A. King,et al.  Tierra Blanca: an Unusual Achondrite from West Texas , 1981 .

[57]  Bruce Hapke,et al.  Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm , 1987 .

[58]  P. Buseck Pallasite meteorites—mineralogy, petrology and geochemistry , 1977 .

[59]  J. Kruger,et al.  Optical Constants of Iron in the Visible Region , 1965 .

[60]  John L. Remo,et al.  A preliminary study of the ductile‐brittle transition under impact conditions in material from an octahedrite , 1975 .

[61]  E. Anders Most stony meteorites come from the asteroid belt , 1978 .

[62]  Dorian G. W. Smith,et al.  Reflectance spectra of 'featureless' materials and the surface mineralogies of M- and E-class asteroids , 1990 .

[63]  B. Mason The enstatite chondrites , 1966 .

[64]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[65]  R. T. Dodd Accretion of the ordinary chondrites , 1975 .

[66]  M. Gaffey The spectral and physical properties of metal in meteorite assemblages: Implications for asteroid surface materials , 1986 .

[67]  M. Gaffey,et al.  Reflectance spectroscopy of diogenite meteorite types from Antarctica and their relationship to asteroids , 1982 .

[68]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[69]  Robert B. Singer,et al.  Effects of temperature on remotely sensed mineral absorption features , 1985 .

[70]  A. Dollfus,et al.  Reflectance spectrophotometry extended to u.v. for terrestrial, lunar and meteoritic samples , 1980 .

[71]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .

[72]  Graham R. Hunt,et al.  The use of near-infrared spectroscopy to determine the degree of serpentinization of ultramafic rocks , 1981 .

[73]  G. Pialli,et al.  Dynamically Deformed Structures in Some Meteorites , 1969 .

[74]  W. Hartmann,et al.  The Meteorite-Asteroid Connection: Two Olivine-Rich Asteroids , 1984, Science.