The Heckscher-Ohlin Model and the Network Structure of International Trade

This paper estimates for 28 product groups a characteristic parameter that reflects the topological structure of its trading network. Using these estimates, it then describes how the structure of international trade has evolved during the 1980-2000 period. Thereafter, it demonstrates the importance of networks in international trade by explicitly accounting for their scaling properties when testing the prediction of the Heckscher-Ohlin model that factor endowment differentials determine bilateral trade flows. The results suggest that differences in factor endowments increase bilateral trade in goods that are traded in "dispersed" networks. For goods that are traded in "concentrated" networks, factor endowment differentials are less important.

[1]  James E. Rauch,et al.  Networks Versus Markets in International Trade , 1996 .

[2]  César A. Hidalgo,et al.  The Product Space Conditions the Development of Nations , 2007, Science.

[3]  James E. Anderson A Theoretical Foundation for the Gravity Equation , 1979 .

[4]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[5]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[6]  Marián Boguñá,et al.  Topology of the world trade web. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  A. Wilhite,et al.  Bilateral Trade and ‘Small-World’ Networks , 2001 .

[8]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Dalia S. Hakura Why does HOV fail?: The role of technological differences within the EC , 2001 .

[10]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[11]  Keith E. Maskus,et al.  A test of the Heckscher-Ohlin-Vanek theorem: The Leontief commonplace , 1985 .

[12]  G. Fagiolo,et al.  The evolution of the world trade web: a weighted-network analysis , 2008 .

[13]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[14]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[15]  David E. Weinstein,et al.  Using International and Japanese Regional Data to Determine When the Factor Abundance Theory of Trade Works , 1997 .

[16]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[17]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[18]  W. Arthur,et al.  Complexity and the economy , 2014, Science.

[19]  Tilman Brück,et al.  Scale-Free Networks in International Trade , 2005 .

[20]  César A. Hidalgo,et al.  The building blocks of economic complexity , 2009, Proceedings of the National Academy of Sciences.

[21]  Daniel Trefler,et al.  The Case of the Missing Trade and Other Mysteries , 2002 .

[22]  S. Evenett,et al.  On Theories Explaining the Success of the Gravity Equation , 1998, Journal of Political Economy.

[23]  D. Garlaschelli,et al.  Structure and evolution of the world trade network , 2005, physics/0502066.

[24]  Edward E. Leamer,et al.  Multicountry, Multifactor Tests of the Factor Abundance Theory , 1986 .

[25]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Michel L. Goldstein,et al.  Problems with fitting to the power-law distribution , 2004, cond-mat/0402322.

[27]  Javier Reyes,et al.  The architecture of globalization: a network approach to international economic integration , 2006 .

[28]  Paul Travis Nicholls Estimation of Zipf parameters , 1987, J. Am. Soc. Inf. Sci..

[29]  Fabian J Theis,et al.  Which Sectors of a Modern Economy are Most Central? , 2010, SSRN Electronic Journal.

[30]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[31]  S. Strogatz Exploring complex networks , 2001, Nature.