Free vibration analysis of functionally graded conical shell panels by a meshless method

A free vibration analysis of metal and ceramic functionally graded conical shell panels is presented using the element-free kp-Ritz method. The first-order shear deformation shell theory is used to account for the transverse shear strains and rotary inertia, and mesh-free kernel particle functions are employed to approximate the two-dimensional displacement fields. The material properties of the conical shell panels are assumed to vary continuously through their thickness in accordance with a power-law distribution of the volume fractions of their constituents. Convergence studies are performed in terms of the number of nodes, and comparisons of the current solutions and those reported in literature are provided to verify the accuracy of the proposed method. Two types of functionally graded conical shell panels, including Al/ZrO2 and Ti–6Al–4V/aluminum oxide, are chosen in the study, and the effects of the volume fraction, boundary condition, semi-vertex angle, and length-to-thickness ratio on their frequency characteristics are discussed in detail.

[1]  K. Liew,et al.  Analysis of Symmetrically Laminated Folded Plate Structures Using the Meshfree Galerkin Method , 2009 .

[2]  K. Liew,et al.  Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders , 2003 .

[3]  Robin S. Langley,et al.  FREE VIBRATION OF THIN, ISOTROPIC, OPEN, CONICAL PANELS , 1998 .

[4]  W. Hao,et al.  Numerical simulations of large deformation of thin shell structures using meshfree methods , 2000 .

[5]  Daniel J. Inman,et al.  2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures , 2009 .

[6]  Francesco Tornabene,et al.  Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution , 2009 .

[7]  Hirohisa Noguchi,et al.  Element free analyses of shell and spatial structures , 2000 .

[8]  K. M. Liew,et al.  Effects of FGM materials on the parametric resonance of plate structures , 2000 .

[9]  K. M. Liew,et al.  Free vibration analysis of functionally graded plates using the element-free kp-Ritz method , 2009 .

[10]  Y. S. Touloukian THERMOPHYSICAL PROPERTIES OF HIGH TEMPERATURE SOLID MATERIALS. , 1967 .

[11]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[12]  Abdullah H. Sofiyev,et al.  The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure , 2009 .

[13]  K. M. Liew,et al.  Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators , 2004 .

[14]  K. Liew,et al.  Active control of FGM plates with integrated piezoelectric sensors and actuators , 2001 .

[15]  Chang Shu,et al.  FREE VIBRATION ANALYSIS OF COMPOSITE LAMINATED CONICAL SHELLS BY GENERALIZED DIFFERENTIAL QUADRATURE , 1996 .

[16]  K. M. Liew,et al.  Free vibration analysis of conical shells via the element-free kp-Ritz method , 2005 .

[17]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[18]  Ch. Zhang,et al.  Static and Dynamic Analysis of Shallow Shells with Functionally Graded and Orthotropic Material Properties , 2008 .

[19]  A. Leissa,et al.  Vibration of shells , 1973 .

[20]  K. M. Liew,et al.  Analysis of rectangular laminated composite plates via FSDT meshless method , 2002 .

[21]  K. Liew,et al.  Geometric non‐linear analysis of folded plate structures by the spline strip kernel particle method , 2007 .

[22]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[23]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[24]  K. Liew,et al.  Vibratory Characteristics of Cantilevered Rectangular Shallow Shells of Variable Thickness , 1994 .

[25]  Moshe Eisenberger,et al.  Exact vibration analysis of variable thickness thick annular isotropic and FGM plates , 2007 .

[26]  K. M. Liew,et al.  Meshless method for modeling of human proximal femur: treatment of nonconvex boundaries and stress analysis , 2002 .

[27]  Satya N. Atluri,et al.  Thermal Analysis of Reissner-Mindlin Shallow Shells with FGM Properties by the MLPG , 2008 .

[28]  K. M. Liew,et al.  Vibration of perforated doubly-curved shallow shells with rounded corners , 1994 .

[29]  K. M. Liew,et al.  Elasto‐plasticity revisited: numerical analysis via reproducing kernel particle method and parametric quadratic programming , 2002 .

[30]  K. M. Liew,et al.  Vibratory behaviour of shallow conical shells by a global Ritz formulation , 1995 .

[31]  K. M. Liew,et al.  A higher order theory for vibration of shear deformable cylindrical shallow shells , 1995 .

[32]  A. H. Sofiyev,et al.  The stability of functionally graded truncated conical shells subjected to aperiodic impulsive loading , 2004 .

[33]  Naotake Noda Thermal stresses in functionally graded materials , 1999 .

[34]  Romesh C. Batra,et al.  TRANSIENT THERMOELASTIC DEFORMATIONS OF A THICK FUNCTIONALLY GRADED PLATE , 2004 .

[35]  Renato Natal Jorge,et al.  Natural frequencies of functionally graded plates by a meshless method , 2006 .

[36]  K. M. Liew,et al.  The element-free kp-Ritz method for free vibration analysis of conical shell panels , 2006 .

[37]  K. M. Liew,et al.  Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells , 2002 .

[38]  J. N. Reddy,et al.  Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates , 1998 .

[39]  Y. K. Cheung,et al.  Free vibration analysis of singly curved shell by spline finite strip method , 1989 .

[40]  K. M. Liew,et al.  Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method , 2009 .

[41]  T. Y. Ng,et al.  Finite element modeling of active control of functionally graded shells in frequency domain via piezoelectric sensors and actuators , 2002 .

[42]  K. M. Liew,et al.  A FEM model for the active control of curved FGM shells using piezoelectric sensor/actuator layers , 2002 .