Evolved Controllers for Simulated Locomotion

We present a system for automatically evolving neural networks as physics-based locomotion controllers for humanoid characters. Our approach provides two key features: (a) the topology of the neural network controller gradually grows in size to allow increasingly complex behavior, and (b) the evolutionary process requires only the physical properties of the character model and a simple fitness function. No a priori knowledge of the appropriate cycles or patterns of motion is needed.

[1]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[2]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[3]  Sethu Vijayakumar,et al.  Adaptive Optimal Control for Redundantly Actuated Arms , 2008, SAB.

[4]  Phil Husbands,et al.  Evolution of central pattern generators for bipedal walking in a real-time physics environment , 2002, IEEE Trans. Evol. Comput..

[5]  C. Paul Bilateral Decoupling in the Neural Control of Biped Locomotion , 2003 .

[6]  Michiel van de Panne,et al.  Virtual Wind-up Toys for Animation , 1993 .

[7]  M. Dorigo,et al.  Intelligent Robots and Autonomous Agents , 2002 .

[8]  Petros Faloutsos,et al.  The virtual stuntman: dynamic characters with a repertoire of autonomous motor skills , 2001, Comput. Graph..

[9]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[10]  Gregory Hornby,et al.  Shortcomings with Tree-Structured Edge Encodings for Neural Networks , 2004, GECCO.

[11]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[12]  Petros Faloutsos,et al.  A dynamic controller toolkit , 2007, Sandbox '07.

[13]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[14]  M. Golubitsky,et al.  Symmetry in locomotor central pattern generators and animal gaits , 1999, Nature.

[15]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[16]  Chandana Paul,et al.  Sensorimotor Control of Biped Locomotion , 2005, Adapt. Behav..

[17]  Victor B. Zordan,et al.  Dynamic response for motion capture animation , 2005, SIGGRAPH '05.

[18]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[19]  Ezequiel A. Di Paolo,et al.  The evolution of control and adaptation in a 3D powered passive dynamic walker , 2004 .

[20]  James K. Hahn,et al.  Evolutionary controller synthesis for 3-d character animation , 1999 .

[21]  Risto Miikkulainen,et al.  Efficient evolution of neural networks through complexification , 2004 .

[22]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[23]  D J Dewhurst,et al.  Neuromuscular control system. , 1967, IEEE transactions on bio-medical engineering.

[24]  Risto Miikkulainen,et al.  Competitive Coevolution through Evolutionary Complexification , 2011, J. Artif. Intell. Res..

[25]  D. Floreano,et al.  Evolutionary Robotics: The Biology,Intelligence,and Technology , 2000 .

[26]  Jessica K. Hodgins,et al.  The Effects of Noise on the Perception of Animated Human Running , 1999, Computer Animation and Simulation.

[27]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[28]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[29]  Jessica K. Hodgins,et al.  Animation of dynamic legged locomotion , 1991, SIGGRAPH.

[30]  Daniel Thalmann,et al.  Computer Animation and Simulation ’97 , 1997, Eurographics.

[31]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[32]  Rolf Pfeifer,et al.  Morpho-functional machines : the new species : designing embodied intelligence , 2003 .

[33]  Riccardo Poli,et al.  Genetic and Evolutionary Computation – GECCO 2004 , 2004, Lecture Notes in Computer Science.

[34]  Jordan B. Pollack,et al.  Creating High-Level Components with a Generative Representation for Body-Brain Evolution , 2002, Artificial Life.