Higher-Dimensional Packing with Order Constraints

We present a first exact study on higher-dimensional packing problems with order constraints. Problems of this type occur naturally in applications such as logistics or computer architecture and can be interpreted as higher-dimensional generalizations of scheduling problems. Using graph-theoretic structures to describe feasible solutions, we develop a novel exact branch-and-bound algorithm. This extends previous work by Fekete and Schepers; a key tool is a new order-theoretic characterization of feasible extensions of a partial order to a given comparability graph that is tailor-made for use in a branch-and-bound environment. The usefulness of our approach is validated by computational results.

[1]  Jan Węglarz,et al.  Project scheduling : recent models, algorithms, and applications , 1999 .

[2]  John E. Beasley,et al.  An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure , 1985, Oper. Res..

[3]  M. Golumbic CHAPTER 3 – Perfect Graphs , 1980 .

[4]  R. Möhring Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions , 1985 .

[5]  Sándor P. Fekete,et al.  A New Exact Algorithm for General Orthogonal D-Dimensional Knapsack Problems , 1997, ESA.

[6]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[7]  Rolf H. Möhring,et al.  Solving Project Scheduling Problems by Minimum Cut Computations , 2002, Manag. Sci..

[8]  Joseph Naor,et al.  Tight bounds for dynamic storage allocation , 1994, SODA '94.

[9]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[10]  Bruce A. Reed,et al.  P4-comparability graphs , 1989, Discret. Math..

[11]  Sándor P. Fekete,et al.  New Classes of Lower Bounds for Bin Packing Problems , 1998, IPCO.

[12]  Jürgen Teich,et al.  Extending Partial Suborders , 2001, Electron. Notes Discret. Math..

[13]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[14]  Manfred W. Padberg,et al.  Packing small boxes into a big box , 2000, Math. Methods Oper. Res..

[15]  Jürgen Teich,et al.  Compile-time Optimization of Dynamic Hardware Reconfigurations , 1999, PDPTA.

[16]  Jürgen Teich,et al.  Optimal FPGA module placement with temporal precedence constraints , 2001, Proceedings Design, Automation and Test in Europe. Conference and Exhibition 2001.

[17]  R. Möhring Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .

[18]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[19]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[20]  Eugene L. Lawler,et al.  Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.

[21]  Nicos Christofides,et al.  An exact algorithm for general, orthogonal, two-dimensional knapsack problems , 1995 .

[22]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[23]  Po-Jen Chuang,et al.  Processor allocation in k-ary n-cube multiprocessors , 1997, Proceedings of the 1997 International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN'97).