Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar.

Height profiles of the extinction and the backscatter coefficients in cirrus clouds are determined independently from elastic- and inelastic- (Raman) backscatter signals. An extended error analysis is given. Examples covering the measured range of extinction-to-backscatter ratios (lidar ratios) in ice clouds are presented. Lidar ratios between 5 and 15 sr are usually found. A strong variation between 2 and 20 sr can be observed within one cloud profile. Particle extinction coefficients determined from inelastic-backscatter signals and from elastic-backscatter signals by using the Klett method are compared. The Klett solution of the extinction profile can be highly erroneous if the lidar ratio varies along the measuring range. On the other hand, simple backscatter lidars can provide reliable information about the cloud optical depth and the mean cloud lidar ratio.

[1]  Walter Hitschfeld,et al.  ERRORS INHERENT IN THE RADAR MEASUREMENT OF RAINFALL AT ATTENUATING WAVELENGTHS , 1954 .

[2]  B. J. Mason,et al.  The behaviour of freely falling cylinders and cones in a viscous fluid , 1965, Journal of Fluid Mechanics.

[3]  J. Cooney,et al.  Measurements Separating the Gaseous and Aerosol Components of Laser Atmospheric Backscatter , 1969, Nature.

[4]  Benjamin M. Herman,et al.  Determination of aerosol height distributions by lidar , 1972 .

[5]  S H Melfi,et al.  Remote measurements of the atmosphere using Raman scattering. , 1972, Applied optics.

[6]  A Single-ended Atmospheric Transmissometer , 1974 .

[7]  A. Heymsfield Cirrus Uncinus Generating Cells and the Evolution of Cirriform Clouds. Part I: Aircraft Observations of the Growth of the Ice Phase , 1975 .

[8]  Kenneth E. Kunkel,et al.  Monte Carlo Analysis of Multiply Scattered Lidar Returns. , 1976 .

[9]  C. M. R. Platt Lidar Backscatter from Horizontal Ice Crystal Plates , 1978 .

[10]  M. McCormick,et al.  Methodology for error analysis and simulation of lidar aerosol measurements. , 1979, Applied optics.

[11]  L. J. Cox Optical Properties of the Atmosphere , 1979 .

[12]  C. Platt,et al.  Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer Measurements , 1979 .

[13]  Ronald G. Pinnick,et al.  Backscatter and extinction in water clouds , 1981 .

[14]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[15]  K. Liou,et al.  Polarized light scattering by hexagonal ice crystals: theory. , 1982, Applied optics.

[16]  E. Eloranta,et al.  High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation. , 1983, Applied optics.

[17]  Transfer of Solar Radiation in Optically Anisotropic Ice Clouds , 1983 .

[18]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[19]  Andrew J. Heymsfield,et al.  A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .

[20]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[21]  S. Pal,et al.  Determination of cloud microphysical properties by laser backscattering and extinction measurements. , 1985, Applied optics.

[22]  Y. Sasano,et al.  Error caused by using a constant extinction/backscattering ratio in the lidar solution. , 1985, Applied optics.

[23]  L R Bissonnette,et al.  Sensitivity analysis of lidar inversion algorithms. , 1986, Applied optics.

[24]  M. Molina,et al.  Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range , 1986 .

[25]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[26]  A. C. Dilley,et al.  Remote Sounding of High Clouds. Part VI: Optical Properties of Midlatitude and Tropical Cirrus , 1987 .

[27]  P T Woods,et al.  Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter. , 1987, Applied optics.

[28]  K. Sassen,et al.  Homogeneous Nucleation Rate for Highly Supercooled Cirrus Cloud Droplets , 1988 .

[29]  B. Evans Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar. , 1988, Applied optics.

[30]  李幼升,et al.  Ph , 1989 .

[31]  John Hallett,et al.  Evaporation and melting of ice crystals: A laboratory study , 1989 .

[32]  Optical and microphysical properties of a cold cirrus cloud : Evidence for regions of small ice particles. , 1989 .

[33]  K. Liou,et al.  Solar Radiative Transfer in Cirrus Clouds. Part I: Single-Scattering and Optical Properties of Hexagonal Ice Crystals , 1989 .

[34]  A. Ansmann,et al.  Measurement of atmospheric aerosol extinction profiles with a Raman lidar. , 1990, Optics letters.

[35]  D. P. Wareing,et al.  Lidar observations of the horizontal orientation of ice crystals in cirrus clouds , 1990 .

[36]  Lidar observations of the horizontal orientation of ice crystals in cirrus clouds: LIDAR OBSERVATIONS OF THE HORIZONTAL ORIENTATION OF ICE CRYSTALS IN CIRRUS CLOUDS , 1990 .

[37]  E. Eloranta,et al.  The 27-28 October 1986 FIRE IFO cirrus case study : cloud optical properties determined by high spectral resolution lidar , 1990 .