The Return of the Spike Postsynaptic Action Potentials and the Induction of LTP and LTD

[1]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[2]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[3]  Xian-Min Yu,et al.  Gain control of NMDA-receptor currents by intracellular sodium , 1998, Nature.

[4]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[5]  D. Linden,et al.  Polarity of Long-Term Synaptic Gain Change Is Related to Postsynaptic Spike Firing at a Cerebellar Inhibitory Synapse , 1998, Neuron.

[6]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[7]  Mark J. Thomas,et al.  Postsynaptic Complex Spike Bursting Enables the Induction of LTP by Theta Frequency Synaptic Stimulation , 1998, The Journal of Neuroscience.

[8]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[9]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[11]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[12]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.

[13]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[14]  N. Spruston,et al.  Prolonged Sodium Channel Inactivation Contributes to Dendritic Action Potential Attenuation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[15]  D. Johnston,et al.  Slow Recovery from Inactivation of Na+ Channels Underlies the Activity-Dependent Attenuation of Dendritic Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1997, The Journal of Neuroscience.

[16]  W. N. Ross,et al.  Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[18]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[19]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[20]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[21]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[22]  M. Bear,et al.  This paper was presented at a colloquium entitled ‘ ‘ Memory : Recording Experience in Cells and Circuits , ’ ’ organized by , 1996 .

[23]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[24]  R. Nicoll,et al.  Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus , 1996, Neuron.

[25]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[26]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[27]  M. Kano Plasticity of inhibitory synapses in the brain: a possible memory mechanism that has been overlooked , 1995, Neuroscience Research.

[28]  W Singer,et al.  Induction of LTP and LTD in visual cortex neurones by intracellular tetanization , 1994, Neuroreport.

[29]  W. Singer,et al.  Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation , 1993, Trends in Neurosciences.

[30]  C. Armstrong,et al.  Inhibitory synaptic currents in rat cerebellar Purkinje cells: modulation by postsynaptic depolarization. , 1992, The Journal of physiology.

[31]  B. Alger,et al.  Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[33]  H. Wigström,et al.  Long‐term potentiation involves enhanced synaptic excitation relative to synaptic inhibition in guinea‐pig hippocampus. , 1987, The Journal of physiology.

[34]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  H. Scharfman,et al.  Postsynaptic firing during repetitive stimulation is required for long-term potentiation in hippocampus , 1985, Brain Research.

[36]  K. Lee Cooperativity among afferents for the induction of long-term potentiation in the CA1 region of the hippocampus , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  H. Wigström,et al.  Facilitated induction of hippocampal long-lasting potentiation during blockade of inhibition , 1983, Nature.

[38]  R. Douglas,et al.  Inhibitory modulation of long-term potentiation: Evidence for a postsynaptic locus of control , 1982, Brain Research.

[39]  P. Andersen,et al.  Possible mechanisms for long‐lasting potentiation of synaptic transmission in hippocampal slices from guinea‐pigs. , 1980, The Journal of physiology.

[40]  Y FUJITA,et al.  Electrophysiological properties of CA1 and CA2 apical dendrites of rabbit hippocampus. , 1962, Journal of neurophysiology.

[41]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[42]  L H HAMLYN,et al.  Action potentials of the pyramidal neurones in the hippocampus of the rabbit , 1955, The Journal of physiology.

[43]  W. N. Ross,et al.  Serotonin modulates spike backpropagation and associated [Ca2+]i changes in the apical dendrites of hippocampal CA1 pyramidal neurons. , 1999, Journal of neurophysiology.

[44]  D. Linden,et al.  Long-term synaptic depression. , 1995, Annual review of neuroscience.

[45]  G Christofi,et al.  The postsynaptic induction of nonassociative long-term depression of excitatory synaptic transmission in rat hippocampal slices. , 1993, Journal of neurophysiology.

[46]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[47]  H. Wigström,et al.  Long-Term Potentiation of Synaptic Transmission in the Hippocampus Obeys Hebb’s Rule for Synaptic Modification , 1988 .

[48]  P. Schwartzkroin,et al.  Electrophysiology of Hippocampal Neurons , 1987 .

[49]  P. Andersen Interhippocampal impulses. II. Apical dendritic activation of CAI neurons. , 1960, Acta physiologica Scandinavica.