Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics

Single-crystal Ge nanowires are synthesized by a low-temperature (275 °C) chemical vapor deposition (CVD) method. Boron doped p-type GeNW field-effect transistors (FETs) with back-gates and thin SiO2 (10 nm) gate insulators are constructed. Hole mobility higher than 600 cm2/V s is observed in these devices, suggesting high quality and excellent electrical properties of as-grown Ge wires. In addition, integration of high-κ HfO2 (12 nm) gate dielectric into nanowire FETs with top-gates is accomplished with promising device characteristics obtained. The nanowire synthesis and device fabrication steps are all performed below 400 °C, opening a possibility of building three-dimensional electronics with CVD-derived Ge nanowires.

[1]  Krishna C. Saraswat,et al.  Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application , 2003 .

[2]  K. Saraswat,et al.  Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition , 2003 .

[3]  Daihua Zhang,et al.  Electronic transport studies of single-crystalline In2O3 nanowires , 2003 .

[4]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[5]  H. Dai,et al.  Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. , 2002, Angewandte Chemie.

[6]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[7]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[8]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[9]  Peidong Yang,et al.  Inorganic Semiconductor Nanowires , 2002 .

[10]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[11]  Jae-Young Yu,et al.  Silicon Nanowires: Preparation, Device Fabrication, and Transport Properties , 2000 .

[12]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[13]  Alan M. Cassell,et al.  Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers , 1998, Nature.

[14]  Chenming Hu,et al.  The impact of device scaling and power supply change on CMOS gate performance , 1996, IEEE Electron Device Letters.

[15]  L. Hitt,et al.  p-channel germanium MOSFETs with high channel mobility , 1989, IEEE Electron Device Letters.

[16]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[17]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .