Gradients in climate, geology, and topography affecting coastal alluvial fan morphodynamics in hyperarid regions – The Atacama perspective

Abstract Along the coast of the hyperarid Atacama Desert, late Quaternary alluvial fans emerge from the Coastal Cordillera to the Pacific Ocean between 20.5°S and 25.5°S. Coastal alluvial fans (CAF) show, in comparison to the interior fans of the Atacama Desert, pronounced recent activity. However, the complex interplay between climate, lithology, and tectonics affecting the CAF morphodynamics in such hyperarid coastal settings needs to be better understood. We therefore aim at assessing the major factors driving CAF activity and evaluate their effects along gradients. We conducted an extensive study relating climatic, lithologic, and tectonic characteristics to fan and catchment geomorphology of 123 CAF. Geomorphometric analyses are based on the 12.5 m TanDEM-X WorldDEM™, catchment lithology and faults are extracted from 13 regional geological maps, and the frequency of heavy rainfall events capable of activating CAF is derived from a Weather Research and Forecasting (WRF) regional climate model. Our results point to a primary climatic control on CAF morphodynamics shown in functional relationships with catchment hydromorphometric characteristics reflecting a high susceptibility to debris flows – the main CAF-constructing process. Catchment properties along the latitudinal gradient reflect the source of significant precipitation events: frontal systems and cut-off lows which mainly originate in the extratropics and become increasingly rare towards the north. The frequency of precipitation extremes can only be correlated to the hydromorphometry and geomorphic maturity of catchments that feature a high degree of sediment transport potential and generally do not cut back far into the Coastal Cordillera. Related to the strongly reduced influence of the Pacific precipitation source towards the east, this additional climatic transition is governed by the orographic effect of the steep W-E gradient in topography. In contrast, source-area lithology is of negligible relevance for CAF catchment morphometry and fan activity. An important indirect influence of tectonics, however, can be seen in the long-term (neo)tectonic activity within the Coastal Cordillera, which in turn shapes catchments and controls the topography.

[1]  T. Ehlers,et al.  Tectonic and Climatic Controls on the Spatial Distribution of Denudation Rates in Northern Chile (18°S to 23°S) Determined From Cosmogenic Nuclides , 2017 .

[2]  Samuel Niedermann,et al.  Evidence for active landscape evolution in the hyperarid Atacama from multiple terrestrial cosmogenic nuclides , 2010 .

[3]  R. Allmendinger,et al.  Invited review paper: Neogene to Quaternary tectonics of the coastal Cordillera, northern Chile , 2010 .

[4]  M. Mandeng-Yogo,et al.  Abrupt increase in the coastal uplift and earthquake rate since ∼40 ka at the northern Chile seismic gap in the Central Andes , 2018, Earth and Planetary Science Letters.

[5]  Extreme ENSO-driven torrential rainfalls at the southern edge of the Atacama Desert during the Late Holocene and their projection into the 21th century , 2019, Global and Planetary Change.

[6]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[7]  P. Vásquez,et al.  The Early Stages of the Magmatic Arc in the Southern Central Andes , 2018 .

[8]  R. Allmendinger,et al.  Trench-parallel shortening in the Northern Chilean Forearc: Tectonic and climatic implications , 2005 .

[9]  A. Goudie,et al.  Rapid salt weathering in the coastal Namib desert: Implications for landscape development , 2007 .

[10]  Achim Roth,et al.  Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data , 2018 .

[11]  Y. Hayakawa,et al.  Knickzone Extraction Tool (KET) – A new ArcGIS toolset for automatic extraction of knickzones from a DEM based on multi-scale stream gradients , 2017 .

[12]  F. Lehmkuhl,et al.  Object-based delineation and classification of alluvial fans by application of mean-shift segmentation and support vector machines , 2017 .

[13]  C. Lange,et al.  Enhancement of coastal upwelling and interdecadal ENSO‐like variability in the Peru‐Chile Current since late 19th century , 2007 .

[14]  Ray Kostaschuk,et al.  Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains , 1987 .

[15]  N. Stenseth,et al.  Twelve Years of Change in Coastal Upwelling along the Central-Northern Coast of Chile: Spatially Heterogeneous Responses to Climatic Variability , 2014, PloS one.

[16]  A. Harvey Local Buffers to the Sediment Cascade: Debris Cones and Alluvial Fans , 2010 .

[17]  P. Warke Complex weathering in drylands: Implications of ‘stress’ history for rock debris breakdown and sediment release , 2007 .

[18]  G. C. Dı́az,et al.  Climatic and Geomorphic Interactions on Alluvial Fans in the Atacama Desert, Chile , 2010 .

[19]  P. Osses,et al.  The climate of the coast and fog zone in the Tarapacá Region, Atacama Desert, Chile , 2008 .

[20]  A. Mather,et al.  The application of drainage system analysis in constraining spatial patterns of uplift in the Coastal Cordillera of northern Chile , 2006 .

[21]  L. Derry,et al.  87Sr/86Sr in recent accumulations of calcium sulfate on landscapes of hyperarid settings: A bimodal altitudinal dependence for northern Chile (19.5°S–21.5°S) , 2015 .

[22]  F. Lambert,et al.  ENSO Influence on Coastal Fog-Water Yield in the Atacama Desert, Chile , 2018 .

[23]  A. Medialdea,et al.  “Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka” , 2019, Scientific Reports.

[24]  P. Giles Investigating the use of alluvial fan volume to represent fan size in morphometric studies , 2010 .

[25]  A. Matmon,et al.  Geomorphic process rates in the central Atacama Desert, Chile: Insights from cosmogenic nuclides and implications for the onset of hyperaridity , 2014, American Journal of Science.

[26]  S. Foerster,et al.  Indices of sediment connectivity: opportunities, challenges and limitations , 2018, Earth-Science Reviews.

[27]  R. Garreaud,et al.  Impact of Warmer Eastern Tropical Pacific SST on the March 2015 Atacama Floods , 2016 .

[28]  B. Kirtman,et al.  El Niño in a changing climate , 2009, Nature.

[29]  J. Louis,et al.  The identification of debris torrent basins using morphometric measures derived within a gis , 2005 .

[30]  A. Mather,et al.  The giant coastal landslides of Northern Chile: Tectonic and climate interactions on a classic convergent plate margin , 2014 .

[31]  A. Bolten,et al.  Accelerated late quaternary uplift revealed by 10Be exposure dating of marine terraces, Mejillones Peninsula, northern Chile , 2016 .

[32]  M. Werner,et al.  Regional debris flow susceptibility analysis in mountainous peri-urban areas through morphometric and land cover indicators , 2014 .

[33]  Paul E. Gessler,et al.  Soil-Landscape Modelling and Spatial Prediction of Soil Attributes , 1995, Int. J. Geogr. Inf. Sci..

[34]  G. Hérail,et al.  Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′S) , 2005 .

[35]  F. Schlunegger,et al.  Scale of relief growth in the forearc of the Andes of Northern Chile (Arica latitude, 18°S) , 2006 .

[36]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[37]  M. Bateman,et al.  Late Quaternary coastal evolution and aeolian sedimentation in the tectonically-active southern Atacama Desert, Chile , 2018 .

[38]  J. Pierce,et al.  Alluvial fan depositional records from north and south-facing catchments in semi-arid montane terrain , 2017, Quaternary Research.

[39]  B. Barrett,et al.  Extreme temperature and precipitation events in March 2015 in central and northern Chile , 2016 .

[40]  T. Ehlers,et al.  End member models for Andean Plateau uplift , 2008 .

[41]  A. Hartley,et al.  Tectonic implications of Late Cenozoic sedimentation from the Coastal Cordillera of northern Chile (22–24ºS) , 1995, Journal of the Geological Society.

[42]  A. Harvey Dryland Alluvial Fans , 2011 .

[43]  B. Wünnemann,et al.  Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses , 2009 .

[44]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[45]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[46]  J. Lindsay,et al.  Hyper-scale analysis of surface roughness , 2018 .

[47]  D. Ford,et al.  RAISED MARINE TERRACES ALONG THE GULF OF ADEN COAST OF SOMALIA , 1996 .

[48]  G. Hancock,et al.  Revisiting the hypsometric curve as an indicator of form and process in transport‐limited catchment , 1998 .

[49]  Caterina Valeo,et al.  Relationship between wadi drainage characteristics and peak-flood flows in arid northern Oman , 2010 .

[50]  J. M. Sappington,et al.  Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert , 2007 .

[51]  J. Grocott,et al.  Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30′S to 27°00′S) , 2002, Journal of the Geological Society.

[52]  J. Barichivich,et al.  Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile , 2008 .

[53]  J. Marengo,et al.  Present-day South American climate , 2009 .

[54]  P. Turner,et al.  Development of a continental forearc: A Cenozoic example from the Central Andes, northern Chile , 2000 .

[55]  B. Currie,et al.  Neogene climate change and uplift in the Atacama Desert, Chile , 2006 .

[56]  J. Boisier,et al.  Climate change along the arid coast of northern Chile , 2012 .

[57]  P. Frattini,et al.  Controls on modern alluvial fan processes in the central Alps, northern Italy , 2004 .

[58]  F. Stuart,et al.  Neogene fluvial landscape evolution in the hyperarid core of the Atacama Desert , 2018, Scientific Reports.

[59]  A. Sarangi,et al.  Hypsometric Integral Estimation Methods and its Relevance on Erosion Status of North-Western Lesser Himalayan Watersheds , 2008 .

[60]  P. Vásquez,et al.  Early Mesozoic Plutonism of the Cordillera de la Costa (34°–37°S), Chile: Constraints on the Onset of the Andean Orogeny , 2011, The Journal of Geology.

[61]  Luc Ortlieb,et al.  Determining the Early History of El Niño , 1997 .

[62]  Askoa Ibisate González de Matauco Análisis morfométrico de la cuenca y de la red de drenaje del río Zadorra y sus afluentes aplicado a la peligrosidad de crecidas , 2004 .

[63]  Peter C. Patton,et al.  Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls , 1976 .

[64]  Juan Puigdefábregas,et al.  The role of vegetation patterns in structuring runoff and sediment fluxes in drylands , 2005 .

[65]  R. Allmendinger,et al.  Young displacements on the Atacama Fault System, northern Chile from field observations and cosmogenic 21Ne concentrations , 2006 .

[66]  F. Lehmkuhl,et al.  Late Pleistocene alluvial fan evolution along the coastal Atacama Desert (N Chile) , 2020, Global and Planetary Change.

[67]  John Wainwright,et al.  Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona , 1995 .

[68]  A. N. Strahler Quantitative geomorphology of drainage basin and channel networks , 1964 .

[69]  John G. McPherson,et al.  Processes and Forms of Alluvial Fans , 2009 .

[70]  T. Ehlers,et al.  Influence of Andean uplift on climate and paleoaltimetry estimates , 2009 .

[71]  R. Amundson,et al.  Active erosion-deposition cycles in the hyperarid Atacama Desert of Northern Chile , 2013 .

[72]  M. Abrams,et al.  Tectonic and climatic implications of alluvial fan sequences along the Batinah coast, Oman , 1994, Journal of the Geological Society.

[73]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[74]  R. Garreaud,et al.  Andean uplift, ocean cooling and Atacama hyperaridity: A climate modeling perspective , 2010 .

[75]  Ricardo Thiele,et al.  Active faulting in northern Chile: ramp stacking and lateral decoupling along a subduction plate boundary? , 1990 .

[76]  P. Marquet,et al.  Geographical distribution of Tillandsia lomas in the Atacama Desert, northern Chile , 2006 .

[77]  J. F. Hubert,et al.  Debris-flow deposits in alluvial fans on the west flank of the White Mountains, Owens Valley, California, U.S.A. , 1989 .

[78]  Raimon Tolosana-Delgado,et al.  "compositions": A unified R package to analyze compositional data , 2008, Comput. Geosci..

[79]  S. Carretier,et al.  Renewed uplift of the Central Andes Forearc revealed by coastal evolution during the Quaternary , 2010 .

[80]  K. Nishiizumi,et al.  Remnants of a fossil alluvial fan landscape of Miocene age in the Atacama Desert of northern Chile using cosmogenic nuclide exposure age dating , 2005 .

[81]  T. Jordan,et al.  Características isotópicas e implicaciones paleoclimáticas del evento de precipitación extrema de marzo de 2015 en el norte de Chile. , 2018 .

[82]  Agus Santoso,et al.  Increased variability of eastern Pacific El Niño under greenhouse warming , 2018, Nature.

[83]  D. Keefer,et al.  A 38 000-year record of floods and debris flows in the Ilo region of southern Peru and its relation to El Niño events and great earthquakes , 2003 .

[84]  D. Sandweiss,et al.  Geoarchaeological Evidence from Peru for a 5000 Years B.P. Onset of El Niño , 1996, Science.

[85]  P. Frattini,et al.  Large slope instabilities in northern Chile: Inventory, characterization and possible triggers , 2014 .

[86]  W. Bull,et al.  The alluvial-fan environment , 1977 .

[87]  R. Espejo,et al.  Fog measurements at the site "Falda Verde" north of Chañaral compared with other fog stations of Chile , 2002 .

[88]  J. Rutllant,et al.  Synoptic aspects of the central chile rainfall variability associated with the southern oscillation , 2007 .

[89]  Adrian J. Hartley,et al.  The central Andean west‐slope rainshadow and its potential contribution to the origin of hyper‐aridity in the Atacama Desert , 2003 .

[90]  Robert S. Schemenauer,et al.  Advective, orographic and radiation fog in the Tarapacá region, Chile , 2002 .

[91]  F. Sirocko,et al.  El Niño variability off Peru during the last 20,000 years , 2005 .

[92]  Luc Ortlieb,et al.  ENSO tropical-extratropical climate teleconnections and mechanisms for Holocene debris flows along the hyperarid coast of western South America (17°-24°S) , 2006 .

[93]  S. Schumm EVOLUTION OF DRAINAGE SYSTEMS AND SLOPES IN BADLANDS AT PERTH AMBOY, NEW JERSEY , 1956 .

[94]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[95]  S. Binnie,et al.  Development of a steep erosional gradient over a short distance in the hyperarid core of the Atacama Desert, northern Chile , 2020 .

[96]  I. Stanistreet,et al.  Pliocene-Pleistocene climate change, sea level and uplift history recorded by the Horingbaai fan-delta, NW Namibia , 2014 .

[97]  R. Paskoff Sur l’évolution géomorphologique du grand escarpement côtier du désert chilien , 2011 .

[98]  G. González,et al.  Tectonics of the Jurassic‐Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): A story of crustal deformation along a convergent plate boundary , 1999 .

[99]  J. Houston,et al.  Variability of precipitation in the Atacama Desert: its causes and hydrological impact , 2006 .

[100]  J. Rutllant,et al.  Major hydrological regime change along the semiarid western coast of South America during the early Holocene , 2012, Quaternary Research.

[101]  H. Diaz,et al.  El Niño and the Southern Oscillation: The Past ENSO Record: A Synthesis , 2000 .

[102]  F. Stuart,et al.  Geomorphology on geologic timescales: Evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru , 2017 .

[103]  Mark A. Melton,et al.  The Geomorphic and Paleoclimatic Significance of Alluvial Deposits in Southern Arizona , 1965, The Journal of Geology.

[104]  José A. Rutllant,et al.  Aluviones históricos en Antofagasta y su relación con eventos El Niño/Oscilación del Sur , 2000 .

[105]  I. Stanistreet,et al.  Morphology and Fluvio‐Aeolian Interaction of the Tropical Latitude, Ephemeral Braided‐River Dominated Koigab Fan, North‐West Namibia , 2009 .

[106]  J. Rethemeyer,et al.  Variation in δ15N of fog-dependent Tillandsia ecosystems reflect water availability across climate gradients in the hyperarid Atacama Desert , 2019 .

[107]  R. Kostaschuk,et al.  Depositional process and alluvial fan‐drainage basin morphometric relationships near banff, Alberta, Canada , 1986 .

[108]  C. Moffat,et al.  On the influence of topography in the induction of coastal upwelling along the Chilean Coast , 2000 .

[109]  A. Mather,et al.  Climatic controls on alluvial-fan activity, Coastal Cordillera, northern Chile , 2005, Geological Society, London, Special Publications.

[110]  J. Quade,et al.  Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile , 2003 .

[111]  Stuart N. Lane,et al.  Connectivity as an emergent property of geomorphic systems , 2018, Earth Surface Processes and Landforms.

[112]  R. Wieler,et al.  Complex multiple cosmogenic nuclide concentration and histories in the arid Rio Lluta catchment, northern Chile , 2009 .

[113]  Mark A. Melton,et al.  analysis of the relations among elements of climate, surface properties, and geomorphology , 1957 .

[114]  Lorenzo Marchi,et al.  Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments , 2013 .

[115]  R. Hooke Processes on Arid-Region Alluvial Fans , 1967, The Journal of Geology.

[116]  L. Ortlieb Eventos El Niño y episodios lluviosos en el desierto de Atacama: el registro de los últimos dos siglos , 1995, Bulletin de l’Institut français d’études andines.

[117]  R. J. Pike,et al.  Elevation-Relief Ratio, Hypsometric Integral, and Geomorphic Area-Altitude Analysis , 1971 .

[118]  The role of vegetation clearing in the mass failure of hillslopes: Moresby Ranges, Western Australia , 1992 .

[119]  David J. Bartholomew,et al.  Latent Variable Models and Factor Analysis: A Unified Approach , 2011 .

[120]  R. Somoza Updated azca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region , 1998 .

[121]  Tibor J. Dunai,et al.  Oligocene Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms , 2005 .

[122]  R. Allmendinger,et al.  Crack formation on top of propagating reverse faults of the Chuculay Fault System, northern Chile: Insights from field data and numerical modelling , 2008 .

[123]  D. Melnick Rise of the central Andean coast by earthquakes straddling the Moho , 2016 .

[124]  B. Hatchett,et al.  Strongest MJO on Record Triggers Extreme Atacama Rainfall and Warmth in Antarctica , 2019, Geophysical Research Letters.

[125]  S. Mudd,et al.  A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles , 2018, Earth Surface Dynamics.

[126]  M. Richter,et al.  PHYTOGEOGRAPHIC DIVISIONS, CLIMATE CHANGE AND PLANT DIEBACK ALONG THE COASTAL DESERT OF NORTHERN CHILE , 2011 .

[127]  H. Ibbeken,et al.  Gravity-based mass balance of an alluvial fan giant: the Arcas Fan, Pampa del Tamarugal, Northern Chile , 1997 .

[128]  B. Valero-Garcés,et al.  The History of the El Niño - Southern Oscillation according to lacustrine and marine sediments , 2007 .

[129]  Y. Hayakawa,et al.  DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers , 2006 .

[130]  D. Tarboton A new method for the determination of flow directions and upslope areas in grid digital elevation models , 1997 .

[131]  D. Hoffmeister,et al.  EVALUATION OF DIGITAL ELEVATION MODELS FOR GEOMORPHOMETRIC ANALYSES ON DIFFERENT SCALES FOR NORTHERN CHILE , 2019, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[132]  G. Hoke,et al.  Uplift of the Altiplano‐Puna plateau: A view from the west , 2010 .

[133]  F. Lehmkuhl,et al.  Geomorphology of the coastal alluvial fan complex Guanillos, northern Chile , 2019, Journal of Maps.

[134]  R. Bras,et al.  Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography , 2004 .

[135]  A. Harvey The role of base-level change in the dissection of alluvial fans: case studies from southeast Spain and Nevada , 2002 .

[136]  Olivier Cerdan,et al.  Application of an index of sediment connectivity in a lowland area , 2015, Journal of Soils and Sediments.

[137]  V. C. Miller,et al.  quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee , 1953 .

[138]  L. Clarke,et al.  Geology and geomorphology of alluvial and fluvial fans: current progress and research perspectives , 2018, Special Publications.

[139]  Tim Davies,et al.  Identification of alluvial fans susceptible to debris-flow hazards , 2011 .

[140]  M. Caffee,et al.  Quaternary alluvial-fan development, climate and morphologic dating of fault scarps in Laguna Salada, Baja California, Mexico , 2008 .

[141]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[142]  M. Schmid,et al.  Addressing the contribution of climate and vegetation cover on hillslope denudation, Chilean Coastal Cordillera (26◦–38◦S) , 2018 .

[143]  A. N. Strahler Hypsometric (area-altitude) analysis of erosional topography. , 1952 .

[144]  J. Davidson,et al.  Tectonic and magmatic evolution of the Andes of northern Argentina and Chile: Earth-Science Reviews , 1982 .

[145]  John L. Innes,et al.  Recognition of debris flow, debris flood and flood hazard through watershed morphometrics , 2004 .

[146]  R. D. Hobson Surface roughness in topography: quantitative approach , 2019, Spatial Analysis in Geomorphology.

[147]  C. Hillaire‐Marcel,et al.  Coastal deformation and sea-level changes in the northern Chile subduction area (23°S) during the last 330 ky , 1996 .

[148]  F. Stuart,et al.  Multiphase development of the Atacama Planation Surface recorded by cosmogenic 3He exposure ages: Implications for uplift and Cenozoic climate change in Western South America , 2009 .

[149]  R. Schumacher Heavy Rainfall and Flash Flooding , 2017 .

[150]  A. Harvey Differential effects of base-level, tectonic setting and climatic change on Quaternary alluvial fans in the northern Great Basin, Nevada, USA , 2005, Geological Society, London, Special Publications.

[151]  M. Eppes,et al.  Cracks in desert pavement rocks: Further insights into mechanical weathering by directional insolation , 2010 .

[152]  R. Allmendinger,et al.  Permanent deformation caused by subduction earthquakes in northern Chile , 2013 .

[153]  A. B. Hayward Coastal alluvial fans (fan deltas) of the Gulf of Aqaba (Gulf of Eilat), Red Sea , 1985 .

[154]  J. Houston,et al.  Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes , 2006 .

[155]  Tjalling de Haas,et al.  Debris-flow dominance of alluvial fans masked by runoff reworking and weathering , 2014 .

[156]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[157]  Christopher P. McKay,et al.  A threshold in soil formation at Earth's arid-hyperarid transition , 2006 .

[158]  John G. McPherson,et al.  Alluvial fans and their natural distinction from rivers based on morphology , 1995 .

[159]  F. Stuart,et al.  Evidence for multiple Plio-Pleistocene lake episodes in the hyperarid Atacama Desert , 2018 .

[160]  Dino Torri,et al.  Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment , 2008 .

[161]  D. Carrizo,et al.  Neogene constriction in the northern Chilean Coastal Cordillera: Neotectonics and surface dating using cosmogenic 21Ne , 2008 .