Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs)

[1]  Chongqi Chen,et al.  Geometric structure distribution and oxidation state demand of cations in spinel NixFe1-xCo2O4 composite cathodes for solid oxide fuel cells , 2021 .

[2]  N. Mushtaq,et al.  High-performing and stable non-doped ceria electrolyte with amorphous carbonate coating layer for low-temperature solid oxide fuel cells , 2021 .

[3]  Yuzheng Lu,et al.  Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe2O4) nanoparticles , 2021, Ceramics International.

[4]  S. Kumari,et al.  Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature , 2021 .

[5]  B. Zhu,et al.  Design principle and assessing the correlations in Sb-doped Ba0.5Sr0.5FeO3–δ perovskite oxide for enhanced oxygen reduction catalytic performance , 2021 .

[6]  B. Lin,et al.  A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0·8Sr0·2MnO3-δ cathode , 2021, Journal of Power Sources.

[7]  Q. Ain,et al.  Electrochemical evaluation of mixed ionic electronic perovskite cathode LaNi1-xCoxO3-δ for IT-SOFC synthesized by high temperature decomposition , 2020, International Journal of Hydrogen Energy.

[8]  A. D’Anna,et al.  Electronic band gap of flame-formed carbon nanoparticles by scanning tunneling spectroscopy , 2020 .

[9]  Xingzhong Zhao,et al.  In-situ growth of nanoparticles-decorated double perovskite electrode materials for symmetrical solid oxide cells , 2020 .

[10]  Z. Lü,et al.  Electrochemical performance evaluation of FeCo2O4 spinel composite cathode for solid oxide fuel cells , 2020 .

[11]  S. J. Pawar,et al.  Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications , 2020 .

[12]  Baoyuan Wang,et al.  Preparations, optical, structural, conductive and magnetic evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites , 2020, Ceramics International.

[13]  B. Zhu,et al.  Electrochemical properties of Ni0.4Zn0.6 Fe2O4 and the heterostructure composites (Ni–Zn ferrite-SDC) for low temperature solid oxide fuel cell (LT-SOFC) , 2020 .

[14]  Zongping Shao,et al.  Preparation of thin electrolyte film via dry pressing/heating /quenching/calcining for electrolyte-supported SOFCs , 2019, Ceramics International.

[15]  D. Ding,et al.  Cation deficiency enabled fast oxygen reduction reaction for a novel SOFC cathode with promoted CO2 tolerance , 2019, Applied Catalysis B: Environmental.

[16]  Jun Shan,et al.  BaCo0.4Fe0.4Zr0.2O3-δ: Evaluation as a cathode for ceria-based electrolyte IT-SOFCs , 2019, Journal of Alloys and Compounds.

[17]  M. Ghangrekar,et al.  Synthesis of bimetallic iron ferrite Co0.5Zn0.5Fe2O4 as a superior catalyst for oxygen reduction reaction to replace noble metal catalysts in microbial fuel cell , 2018, International Journal of Hydrogen Energy.

[18]  T. He,et al.  A-site deficient (La0.6Sr0.4)1–xCo0.2Fe0.6Nb0.2O3–δ symmetrical electrode materials for solid oxide fuel cells , 2018 .

[19]  C. Xia,et al.  Effect of NiO addition on oxygen reduction reaction at lanthanum strontium cobalt ferrite cathode for solid oxide fuel cell , 2018 .

[20]  Yang Yang,et al.  Reduced-temperature redox-stable LSM as a novel symmetrical electrode material for SOFCs , 2018 .

[21]  R. Braun,et al.  Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology , 2017 .

[22]  L. Bronstein,et al.  Effect of mechanochemical synthesis on the structure, magnetic and optical behavior of Ni1−xZnxFe2O4 spinel ferrites , 2017 .

[23]  B. Ramezanzadeh,et al.  Application of CuS-ZnS PN junction for photoelectrochemical water splitting , 2017 .

[24]  A. Sulong,et al.  Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications , 2017 .

[25]  M. Saleemi,et al.  Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ - Sm 0.2 Ce 0.8 O 1.9 ) and Schottky barrier , 2016 .

[26]  Yufeng Zhao,et al.  Cobalt oxides coated commercial Ba0.5Sr0.5Co0.8Fe0.2O3-delta as high performance cathode for low-temperature SOFCs , 2016 .

[27]  V. Thangadurai,et al.  Surface and bulk study of strontium-rich chromium ferrite oxide as a robust solid oxide fuel cell cathode , 2015 .

[28]  T. P. Sumangala,et al.  Temperature dependent phase transformation in nano sized magnesium ferrite , 2015 .

[29]  M. Mozaffari,et al.  Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol–gel method , 2014 .

[30]  Xuefeng Zhu,et al.  Electrochemical performances of spinel oxides as cathodes for intermediate temperature solid oxide fuel cells , 2013 .

[31]  H. Abdullah,et al.  Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells , 2013 .

[32]  Yunhui Huang,et al.  Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells , 2012 .

[33]  Meilin Liu,et al.  An Efficient SOFC Based on Samaria-Doped Ceria (SDC) Electrolyte , 2012 .

[34]  Chenghao Yang,et al.  Perovskite Sr2Fe1.5Mo0.5O6−δ as electrode materials for symmetrical solid oxide electrolysis cells , 2010 .

[35]  T. He,et al.  Cobalt-free cathode material SrFe0.9Nb0.1O3−δ for intermediate-temperature solid oxide fuel cells , 2010 .

[36]  Zhigang Zhu,et al.  Development of cathodes for methanol and ethanol fuelled low temperature (300–600 °C) solid oxide fuel cells , 2007 .

[37]  K. Murata,et al.  Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC , 2007 .

[38]  J. Goodenough,et al.  Nd2 − xLaxNiO4 + δ, a mixed ionic/electronic conductor with interstitial oxygen, as a cathode material , 2007 .

[39]  L. Gauckler,et al.  SOFC test using Ba0.5Sr0.5Co0.8Fe0.2O3−δ as cathode on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte , 2006 .

[40]  Andreas Mai,et al.  Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II. Influence of the CGO interlayer , 2006 .

[41]  Juan Carlos Ruiz-Morales,et al.  On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells , 2006 .

[42]  Juncai Sun,et al.  A high functional cathode material , 2006 .

[43]  Mitsuharu Konuma,et al.  Strong Performance Improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC Cathodes by Electrochemical Activation , 2005 .

[44]  Zhe Cheng,et al.  Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions , 2005 .

[45]  Masayasu Arakawa,et al.  Application of LaNi ( Fe ) O 3 as SOFC Cathode , 2004 .

[46]  Bin Zhu,et al.  Innovative low temperature SOFCs and advanced materials , 2003 .

[47]  S. Deevi,et al.  Development of interconnect materials for solid oxide fuel cells , 2003 .

[48]  Eiji Suzuki,et al.  Electronic States of Chemisorbed Oxygen Species and Their Mutually Related Studies on SnO2 Thin Film , 2001 .