On Time-Local Generators of Quantum Evolution

We present a basic introduction to the dynamics of open quantum systems based on local-in-time master equations. We characterize the properties of time-local generators giving rise to legitimate completely positive trace preserving quantum evolutions. The analysis of Markovian and non-Markovian quantum dynamics is presented as well. The whole discussion is illustrated by the family of many instructive examples.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  J. Cresser,et al.  Comparing different non-Markovianity measures in a driven qubit system , 2010, 1011.5328.

[3]  A. Jamiołkowski,et al.  Geometric Phases in Classical and Quantum Mechanics , 2004 .

[4]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[5]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[6]  M. Sentís Quantum theory of open systems , 2002 .

[7]  P. Haikka,et al.  Non-Markovian Quantum Probes , 2014, Open Syst. Inf. Dyn..

[8]  P. M. Mathews,et al.  STOCHASTIC DYNAMICS OF QUANTUM-MECHANICAL SYSTEMS , 1961 .

[9]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[10]  D. Chru'sci'nski,et al.  Measures of non-Markovianity: Divisibility versus backflow of information , 2011, 1102.4318.

[11]  Fabio Benatti,et al.  Irreversible Quantum Dynamics , 2010 .

[12]  Andrzej Kossakowski,et al.  Markovianity criteria for quantum evolution , 2012, 1201.5987.

[13]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[14]  V. Paulsen Completely Bounded Maps and Operator Algebras: Completely Bounded Multilinear Maps and the Haagerup Tensor Norm , 2003 .

[15]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[16]  J. Schwinger THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Wilcox Exponential Operators and Parameter Differentiation in Quantum Physics , 1967 .

[18]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[19]  Filip A. Wudarski,et al.  Non-Markovian random unitary qubit dynamics , 2012, 1212.2029.

[20]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[21]  James Wei,et al.  Lie Algebraic Solution of Linear Differential Equations , 1963 .

[22]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[23]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[24]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[25]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[26]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[27]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[28]  Heinz-Peter Breuer,et al.  Foundations and measures of quantum non-Markovianity , 2012, 1206.5346.

[29]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[30]  U. Weiss Quantum Dissipative Systems , 1993 .

[31]  Loss of coherence and memory effects in quantum dynamics , 2012 .

[32]  Elsi-Mari Laine,et al.  Markovianity and non-Markovianity in quantum and classical systems , 2011, 1106.0138.

[33]  R. Bhatia Positive Definite Matrices , 2007 .