The pirouette effect in turbulent flows

The chaotic nature of turbulence makes it difficult to develop simple rules of thumb to predict the behaviour of a turbulent flow. But analysis of the motion of three tracer particles with respect to a fourth suggests at least one: that the local alignment of turbulent rotation conserves angular momentum, similar to an ice-skater performing a pirouette.

[1]  Michael Chertkov,et al.  Lagrangian tetrad dynamics and the phenomenology of turbulence , 1999, chao-dyn/9905027.

[2]  R. Cardé,et al.  Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths , 1994, Nature.

[3]  Eric D. Siggia,et al.  Scalar turbulence , 2000, Nature.

[4]  M Chertkov,et al.  Geometry of Lagrangian dispersion in turbulence. , 2000, Physical review letters.

[5]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[6]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[7]  Haitao Xu,et al.  The Role of Pair Dispersion in Turbulent Flow , 2006, Science.

[8]  L. Weinstein,et al.  The legacy. , 2004, Journal of gerontological nursing.

[9]  M. Sullenberger,et al.  Models and simulations , 1984 .

[10]  A. Kerstein,et al.  Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence , 1987 .

[11]  M. Vergassola,et al.  Particles and fields in fluid turbulence , 2001, cond-mat/0105199.

[12]  Lance R. Collins,et al.  Two-Particle Dispersion in Isotropic Turbulent Flows , 2009 .

[13]  F. Toschi,et al.  Lagrangian Properties of Particles in Turbulence , 2009 .

[14]  Haitao Xu,et al.  Evolution of geometric structures in intense turbulence , 2007, 0708.3955.

[15]  J. W. Humberston Classical mechanics , 1980, Nature.

[16]  Wolfgang Kinzelbach,et al.  Lagrangian measurement of vorticity dynamics in turbulent flow , 2005, Journal of Fluid Mechanics.

[17]  P. Boyd,et al.  Importance of stirring in the development of an iron-fertilized phytoplankton bloom , 2000, Nature.

[18]  Steven A. Orszag,et al.  Structure and dynamics of homogeneous turbulence: models and simulations , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[19]  Eric J. Kostelich,et al.  Measuring intense rotation and dissipation in turbulent flows , 2003, Nature.

[20]  Marc J. Weissburg,et al.  Slow-moving predatory gastropods track prey odors in fast and turbulent flow , 2005, Journal of Experimental Biology.

[21]  Peter E. Hamlington,et al.  Direct Assessment of Vorticity Alignment with Local and Nonlocal Strain Rates in Turbulent Flows , 2008, 0810.3439.

[22]  Eberhard Bodenschatz,et al.  A quantitative study of three-dimensional Lagrangian particle tracking algorithms , 2006 .

[23]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[24]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[25]  S. Pope,et al.  Material-element deformation in isotropic turbulence , 1990, Journal of Fluid Mechanics.

[26]  E. Siggia Invariants for the one-point vorticity and strain rate correlation functions , 1981 .

[27]  Eliezer Kit,et al.  Experimental investigation of the field of velocity gradients in turbulent flows , 1992, Journal of Fluid Mechanics.

[28]  R. A. Shaw,et al.  Can We Understand Clouds Without Turbulence? , 2010, Science.

[29]  James M. Wallace,et al.  Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: What have we learned about turbulence?a) , 2009 .

[30]  Haitao Xu,et al.  Tracking Lagrangian trajectories in position–velocity space , 2008 .