An Unsupervised Classification Approach for Polarimetric SAR Data Based on the Chernoff Distance for Complex Wishart Distribution

A new unsupervised classification approach for polarimetric synthetic aperture radar (POLSAR) data is proposed in this paper. The Wishart-Chernoff distance is calculated and used in an agglomerative hierarchical clustering approach. Initial segmentation of POLSAR data into clusters is obtained based on the total backscattering power (SPAN) combined with the entropy, alpha angle, and anisotropy. The complex Wishart clustering is performed to optimize the initialization. Optimized clusters with minimum Wishart-Chernoff distance are merged hierarchically into an appropriate number of classes. The appropriate number of classes is estimated based on the data log-likelihood algorithm. Classification results show that the use of Wishart-Chernoff distance is superior to that of the Wishart test statistic distance. The effectiveness of the proposed Wishart-Chernoff distance is demonstrated using Advanced Land Observing Satellite POLSAR data.

[1]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[2]  Wen Hong,et al.  An Unsupervised Segmentation With an Adaptive Number of Clusters Using the $SPAN/H/\alpha/A$ Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[4]  Marco Martorella,et al.  Classification of Man-Made Targets via Invariant Coherency-Matrix Eigenvector Decomposition of Polarimetric SAR/ISAR Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Eric Pottier,et al.  Application of the «H / A / α» Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution , 2000 .

[6]  V. Karathanassi,et al.  LAND COVER CLASSIFICATION USING E-SAR POLARIMETRIC DATA , 2004 .

[7]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  Vassilia Karathanassi,et al.  A knowledge-based classification method for polarimetric SAR data , 2005, SPIE Remote Sensing.

[9]  Sang-Eun Park,et al.  Unsupervised Classification of Scattering Mechanisms in Polarimetric SAR Data Using Fuzzy Logic in Entropy and Alpha Plane , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Fakhri Karray,et al.  Toward a tight upper bound for the error probability of the binary Gaussian classification problem , 2008, Pattern Recognit..

[11]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[12]  谢鸿全 An Unsupervised Segmentation With an Adaptive Number of Clusters Using the SPAN/H/a/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis , 2007 .

[13]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[14]  Thomas L. Ainsworth,et al.  Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Jean-Claude Souyris,et al.  Support Vector Machine for Multifrequency SAR Polarimetric Data Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  C. Khatri On Certain Distribution Problems Based on Positive Definite Quadratic Functions in Normal Vectors , 1966 .

[18]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[19]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[20]  A. Braun,et al.  Multilevel hierarchical segmentation method for polarimetric SAR data based on scattering behaviour and histograms , 2010 .

[21]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..