A result in order statistics related to probabilistic counting
暂无分享,去创建一个
[1] N. Nielsen,et al. Handbuch der Theorie der Gammafunktion , 1906 .
[2] Helmut Prodinger,et al. How to Count Quickly and Accurately: A Unified Analysis of Probabilistic Counting and Other Related Problems , 1992, ICALP.
[3] I. Goulden,et al. Combinatorial Enumeration , 2004 .
[4] Helmut Prodinger,et al. Über Längste 1-Teilfolgen In 0-1-Folgen , 1987 .
[5] P. Flajolet,et al. Some Uses of the Mellin Integral Transform in the Analysis of Algorithms , 1985 .
[6] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[7] Philippe Flajolet,et al. Digital Search Trees Revisited , 1986, SIAM J. Comput..
[8] Philippe Flajolet,et al. Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..
[9] H. Prodinger,et al. ON SOME APPLICATIONS OF FORMULAE OF RAMANUJAN IN THE ANALYSIS OF ALGORITHMS , 1991 .
[10] Wojciech Szpankowski,et al. Yet another application of a binomial recurrence order statistics , 1990, Computing.
[11] Philippe Flajolet,et al. Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..
[12] Helmut Prodinger,et al. On the analysis of probabilistic counting , 1990 .
[13] Robin Milner,et al. On Observing Nondeterminism and Concurrency , 1980, ICALP.
[14] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .