P1-Nonconforming Quadrilateral Finite Volume Methods for the Semilinear Elliptic Equations

In this paper we use P1-nonconforming quadrilateral finite volume methods with interpolated coefficients to solve the semilinear elliptic problems. Two types of control volumes are applied. Optimal error estimates in H1-norm on the quadrilateral mesh and superconvergence of derivative on the rectangular mesh are derived by using the continuity argument, respectively. In addition, numerical experiments are presented adequately to confirm the theoretical analysis and optimal error estimates in L2-norm is also observed obviously. Compared with the standard Q1-conforming quadrilateral element, numerical results of the proposed finite volume methods show its better performance than others.

[1]  Min Yang A second-order finite volume element method on quadrilateral meshes for elliptic equations , 2006 .

[2]  Do Y. Kwak,et al.  A General Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids: The Overlapping Covolume Case , 2001, SIAM J. Numer. Anal..

[3]  Shaochun Chen,et al.  Convergence and superconvergence of a nonconforming finite element method for the Stokes problem , 2006, J. Num. Math..

[4]  Gabriel Acosta,et al.  Error Estimates for Cq1 Isoparametric Elements Satisfying a Weak Angle Condition , 2000, SIAM J. Numer. Anal..

[5]  Long Chen,et al.  A New Class of High Order Finite Volume Methods for Second Order Elliptic Equations , 2010, SIAM J. Numer. Anal..

[6]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[7]  Zhiguang,et al.  Superconvergence of Continuous Finite Elements with Interpolated Coefficients for Initial Value Problems of Nonlinear Ordinary Differential Equation , 2007 .

[8]  Qian Li,et al.  Generalized difference method , 1997 .

[9]  Yinnian He,et al.  H 1 Stability and Convergence of the FE, FV and FD Methods for an Elliptic Equation , 2013 .

[10]  Panagiotis Chatzipantelidis Finite Volume Methods for Elliptic PDE's: A New Approach , 2002 .

[11]  Stig Larsson,et al.  Interpolation of Coefficients and Transformation of the Dependent Variable in Finite Element Methods for the Non-linear Heat Equation , 1989 .

[12]  Raytcho D. Lazarov,et al.  A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..

[13]  石 鍾慈,et al.  Proceedings of the Seventh China-Japan Seminar on Numerical Mathematics , 2006 .

[14]  Serge Nicaise,et al.  On the Interpolation Error Estimates for Q1 Quadrilateral Finite Elements , 2008, SIAM J. Numer. Anal..

[15]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[16]  M. Kleiber,et al.  Selected Topics from the Mathematical Theory of Finite Elements , 1998 .

[17]  Tongke Wang,et al.  A mixed finite volume element method based on rectangular mesh for biharmonic equations , 2004 .

[18]  Shi,et al.  P1-NONCONFORMING QUADRILATERAL FINITE VOLUME ELEMENT METHOD AND ITS CASCADIC MULTIGRID ALGORITHM FOR ELLIPTIC PROBLEMS , 2006 .

[19]  So-Hsiang Chou,et al.  On the regularity and uniformness conditions on quadrilateral grids , 2002 .

[20]  Junliang Lv,et al.  L2 error estimate of the finite volume element methods on quadrilateral meshes , 2010, Adv. Comput. Math..

[21]  Bishnu P. Lamichhane,et al.  Inf–sup stable finite-element pairs based on dual meshes and bases for nearly incompressible elasticity , 2008 .

[22]  Yanping Chen,et al.  A Rectangular Finite Volume Element Method for a Semilinear Elliptic Equation , 2008, J. Sci. Comput..

[23]  Linda El Alaoui An adaptive finite volume box scheme for solving a class of nonlinear parabolic equations , 2009, Appl. Math. Lett..

[24]  Dongwoo Sheen,et al.  Locally stabilized p1-nonconforming quadrilateral and hexahedral finite element methods for the Stokes equations , 2011, J. Comput. Appl. Math..

[25]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[26]  MILOŠ ZLAMAL A FINITE ELEMENT SOLUTION OF THE NONLINEAR HEAT EQUATION ( * ) , 2009 .

[27]  Shipeng Mao,et al.  A quadrilateral, anisotropic, superconvergent, nonconforming double set parameter element , 2006 .

[28]  So-Hsiang Chou,et al.  Analysis and convergence of a covolume method for the generalized Stokes problem , 1997, Math. Comput..

[29]  J. H. Bramble,et al.  A second order finite difference analog of the first biharmonic boundary value problem , 1966 .

[30]  Jinchao Xu,et al.  Analysis of linear and quadratic simplicial finite volume methods for elliptic equations , 2009, Numerische Mathematik.

[31]  Stig Larsson,et al.  Error Estimates of Optimal Order for Finite Element Methods with Interpolated Coefficients for the Nonlinear Heat Equation , 1989 .

[32]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[33]  T. Schmidt,et al.  Box schemes on quadrilateral meshes , 1993, Computing.

[34]  M. Zlámal,et al.  A finite element solution of the monlinear heat equation , 1980 .

[35]  Yanping Chen,et al.  Finite volume element method with interpolated coefficients for two-point boundary value problem of semilinear differential equations , 2007 .

[36]  Ronghua Li Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods , 2000 .

[37]  Yh,et al.  GENERALIZED DIFFERENCE METHODS ON ARBITRARY QUADRILATERAL NETWORKS , 1999 .

[38]  Shi,et al.  CONSTRAINED QUADRILATERAL NONCONFORMING ROTATED Q1 ELEMENT , 2005 .

[39]  Ningning Yan,et al.  Superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes equations , 2008, Adv. Comput. Math..

[40]  Rolf Rannacher,et al.  Asymptotic $L^\infty $-Error Estimates for Linear Finite Element Approximations of Quasilinear Boundary Value Problems , 1978 .

[41]  Chuanmiao Chen,et al.  Superconvergence of rectangular finite element with interpolated coefficients for semilinear elliptic problem , 2006, Appl. Math. Comput..

[42]  Ricardo G. Durán,et al.  Error estimates on anisotropic ℚ1 elements for functions in weighted Sobolev spaces , 2005, Math. Comput..

[43]  Shaochun Chen,et al.  A quadrilateral nonconforming finite element for linear elasticity problem , 2007, Adv. Comput. Math..

[44]  박춘재 A Study on locking phenomena in finite element methods , 2002 .

[45]  Stefan Turek,et al.  Numerical analysis for a new non-conforming linear finite element on quadrilaterals , 2006 .