The Effects of Acid Treatment on the Electrochemical Properties of 0.5 Li2MnO3 ∙ 0.5 LiNi0.44Co0.25Mn0.31O2 Electrodes in Lithium Cells

The electrochemical properties of 0.5 Li 2 MnO 3 ·0.5 LiNi 0.4 Co 0.25 Mn 0.31 O 2 electrodes, when preconditioned and activated with acid for 2-24 h, have been studied in lithium cells. Powder X-ray diffraction data and electrochemical measurements provide supporting evidence for an intergrown, composite electrode structure from which Li 2 O can be leached from the Li 2 MnO 3 (Li 2 O MnO 2 ) component with acid, thereby mimicking the electrochemical charge process at high potentials (>4.5 V). The MnO 2 -rich domains generated by acid treatment are reduced during electrochemical discharge at a lower potential than electrochemically generated MnO 2 -rich domains. With prolonged cycling between 4.6 and 2.0 V, dQ/dV plots of untreated and acid-treated electrodes develop similar, but not identical, character, suggesting a coalescence and redox interaction of the manganese ions in MnO 2 -rich and Ni 0.44 Co 0.25 Mn 0.31 O 2 regions of the structure. Acid treatment eliminates the first-cycle capacity loss of the electrodes, consistent with earlier reports for related systems, but it damages their cycling stability and rate capability.

[1]  Christopher S. Johnson,et al.  Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3) , 2004 .

[2]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[3]  J. Dahn,et al.  Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x ≤ 1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0 < x < 1) , 2003 .

[4]  M. Osada,et al.  Layered (1-x-y)LiNi(1/2)Mn(1/2)O(2) [center dot] xLi[Li(1/3)Mn(2/3)] O(2) [center dot] yLiCoO(2) (0<=x = y<=0.3 and x+y=0.5) cathode materials , 2005 .

[5]  Yang Shao-Horn,et al.  Structural and electrochemical analysis of layered compounds from Li2MnO3 , 1999 .

[6]  P. Bruce,et al.  Mechanism of Electrochemical Activity in Li2MnO3 , 2003 .

[7]  J. Ibers,et al.  Structures of HCrO2 and DCrO2 , 1963 .

[8]  H. Kanoh,et al.  Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions , 2000 .

[9]  K. Amine,et al.  Electrochemical and ex situ x-ray study of Li(Li{sub 0.2}Ni{sub 0.2}Mn{sub 0.6})O{sub 2} cathode material for Li secondary batteries. , 2003 .

[10]  Christopher S. Johnson,et al.  Lithium and Deuterium NMR Studies of Acid-Leached Layered Lithium Manganese Oxides , 2002 .

[11]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[12]  J. Dahn,et al.  Influence of LiF Additions on Li [ Ni x Co1 − 2x Mn x ] O 2 Materials Sintering, Structure, and Lithium Insertion Properties , 2004 .

[13]  M. Thackeray,et al.  Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications , 1991 .

[14]  Gerbrand Ceder,et al.  Charge, Potential, and Phase Stability of Layered Li ( Ni0.5Mn0.5 ) O 2 , 2002 .

[15]  John T. Vaughey,et al.  The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .

[16]  Xiao‐Qing Yang,et al.  In Situ X-ray Absorption Spectroscopic Study on LiNi0.5Mn0.5O2 Cathode Material during Electrochemical Cycling , 2003 .

[17]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[18]  G. Ceder,et al.  Electrochemical Activity of Li in the Transition-Metal Sites of O3 Li [ Li ( 1 − 2x ) / 3Mn ( 2 − x ) / 3Ni x ] O 2 , 2004 .

[19]  C. Grey,et al.  NMR studies of cathode materials for lithium-ion rechargeable batteries. , 2004, Chemical reviews.

[20]  Christopher S. Johnson,et al.  Layered xLiMO2.(1 - x)Li2M'O3 electrodes for lithium batteries: a study of 0.95LiMn0.5Ni0.5O2.0.05Li2TiO3 , 2002 .

[21]  Michael M. Thackeray,et al.  Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, Li0.36Mn0.91O2, and Its Lithiated Derivative, Li1.09Mn0.91O2 , 1993 .

[22]  J. Dahn,et al.  A Novel Fabrication Technique for Producing Dense Li [ Ni x Li ( 1 ∕ 3 – 2x ∕ 3 ) Mn ( 2 ∕ 3 − x ∕ 3 ) ] O2, 0 ⩽ x ⩽ 1∕2 , 2005 .

[23]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[24]  Yang‐Kook Sun,et al.  Improvement of High-Voltage Cycling Behavior of Surface-Modified Li [ Ni1 ∕ 3Co1 ∕ 3Mn1 ∕ 3 ] O2 Cathodes by Fluorine Substitution for Li-Ion Batteries , 2005 .