A Wireless Wearable Sensor Patch for the Real-Time Estimation of Continuous Beat-to-Beat Blood Pressure

This paper proposes a wireless wearable sensor system for the continuous beat-to-beat blood pressure (BP) monitoring. The real-time BP can be estimated utilising a 2-parameter regression model based on the pulse arrival time (PAT) and heart rate (HR). The PAT is defined as the time interval between the electrocardiogram (ECG) R-peak and the corresponding maximum inclination point of photoplethysmography (PPG) signal. A wireless wearable sensor patch designed to be attached to the subject’s chest is used for the measurement of ECG and PPG signals. The sensor data are transmitted through a Bluetooth low energy (BLE) module to a computer for the real-time online estimation of BP. To verify the feasibility and performance of the proposed system, a 5-day period experiment is conducted on two healthy male subjects for the training and validation of the BP estimation model. On each day, there are two 15 minutes offline sessions for data collection from the sensor patch, which are compared with the reference BP to calibrate the estimation model parameters. After that, a 10 minutes online session is carried out to validate the regression model against the reference BP device. Eventually, the 5-day period data are combined together for an overall BP estimation model, which has good correlation (r=0.82) with the reference BP measurements. The experimental results show the proposed sensor patch with the BP estimation model is capable of the online real-time BP monitoring after an initial calibration procedure.

[1]  Claudio Sartori,et al.  Noninvasive and Nonocclusive Blood Pressure Estimation Via a Chest Sensor , 2013, IEEE Transactions on Biomedical Engineering.

[2]  B. Norrving,et al.  Global atlas on cardiovascular disease prevention and control. , 2011 .

[3]  Bharat Gupta,et al.  A Literature Review on Current and Proposed Technologies of Noninvasive Blood Pressure Measurement. , 2017, Telemedicine journal and e-health : the official journal of the American Telemedicine Association.

[4]  Zhi-Hong Mao,et al.  Cuff-free blood pressure estimation using pulse transit time and heart rate , 2014, 2014 12th International Conference on Signal Processing (ICSP).

[5]  Mehmet Rasit Yuce,et al.  A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time , 2015, Physiological measurement.