Bireference Procedure fBIP for Interactive Multicriteria Optimization with Fuzzy Coefficients

In the paper an approach to decision making in situations with non-pointlike characterisation and subjective evaluation of the actions is considered. The decision situation is represented mathematically as fuzzy multiobjective linear programming (fMOLP) model, where we apply the reduced fuzzy matrices instead of fuzzy classical numbers. The fMOLP model with reduced parameters is decomposable into the set of point-like models and the point-like models enable effective construction of an optimisation procedure - fBIP, see Wojewnik (2006ab), extending the bireference procedure by Michalowski and Szapiro (1992). The approach is applied to a fuzzy optimization problem in the area of telecommunication services.

[1]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[2]  Y. Haimes,et al.  Multiobjectives in water resource systems analysis: The Surrogate Worth Trade Off Method , 1974 .

[3]  J A Swets,et al.  Signal detection and identification at successive stages of observation , 1978, Perception & psychophysics.

[4]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[5]  Eng Ung Choo,et al.  An interactive algorithm for multicriteria programming , 1980, Comput. Oper. Res..

[6]  Aníbal Ollero,et al.  Fuzzy Methodologies for Interactive Multicriteria Optimization , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Masatoshi Sakawa,et al.  Interactive multiobjective reliability design of a standby system by the sequential proxy optimization technique (SPOT) , 1981 .

[8]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[9]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .

[10]  Masatoshi Sakawa,et al.  Interactive Fuzzy Decision-Making for Multi-Objective Non-Linear Programming Using Reference Membership Intervals , 1985, Int. J. Man Mach. Stud..

[11]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[12]  R. Słowiński A multicriteria fuzzy linear programming method for water supply system development planning , 1986 .

[13]  Herbert A. Simon,et al.  Scientific discovery: compulalional explorations of the creative process , 1987 .

[14]  Martin Stacey,et al.  Scientific Discovery: Computational Explorations of the Creative Processes , 1988 .

[15]  H. Rommelfanger Interactive decision making in fuzzy linear optimization problems , 1989 .

[16]  M. Sasaki,et al.  Interactive sequential fuzzy goal programming , 1990 .

[17]  C. Hwang,et al.  Interactive fuzzy linear programming , 1992 .

[18]  Wojtek Michalowski,et al.  A Bi-Reference Procedure for Interactive Multiple Criteria Programming , 1992, Oper. Res..

[19]  Ching-Lai Hwang,et al.  ISGP-II for multiobjective optimization with imprecise objective coefficients , 1993, Comput. Oper. Res..

[20]  An extension of interactive method for solving multiple objective linear programming with fuzzy parameters , 1993 .

[21]  T. Szapiro Convergence of the Bi-Reference Procedure in Multiple Criteria Decision Making , 1993 .

[22]  B. Roy,et al.  The European school of MCDA: Emergence, basic features and current works , 1996 .

[23]  C. Mohan,et al.  Reference direction interactive method for solving multiobjective fuzzy programming problems , 1998, Eur. J. Oper. Res..

[24]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[25]  Tomasz Szapiro,et al.  On Testing Performance of a Negotiation Procedure in Distributed Environment , 2001 .

[26]  Tadeusz Trzaskalik,et al.  Multiple objective and goal programming : recent developments , 2002 .

[27]  Ignacy Kaliszewski,et al.  Out of the mist--towards decision-maker-friendly multiple criteria decision making support , 2004, Eur. J. Oper. Res..

[28]  Ignacy Kaliszewski,et al.  Soft Computing for Complex Multiple Criteria Decision Making , 2006 .

[29]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[30]  Irem Ozkarahan,et al.  A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach , 2008 .

[31]  V. Glezer The meaning of the Weber-Fechner law and description of scenes: III. Description of the visual space , 2009, Human Physiology.

[32]  Mariano Luque,et al.  Modified interactive chebyshev algorithm (MICA) for non-convex multiobjective programming , 2010, Optimization Letters.