暂无分享,去创建一个
J. M. Sanz-Serna | M. P. Calvo | S. Blanes | F. Casas | M. Calvo | S. Blanes | F. Casas | Jesús María Sanz-Serna | J. Sanz-Serna
[1] Adrian Sandu,et al. A Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation , 2015 .
[2] F. Kitaura,et al. Higher order Hamiltonian Monte Carlo sampling for cosmological large-scale structure analysis , 2019, Monthly Notices of the Royal Astronomical Society.
[3] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[4] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[5] D. Dunson,et al. Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods , 2017, 1705.08510.
[6] M. A. López-Marcos,et al. Explicit Symplectic Integrators Using Hessian-Vector Products , 1997, SIAM J. Sci. Comput..
[7] Jesús María Sanz-Serna,et al. Palindromic 3-stage splitting integrators, a roadmap , 2017, J. Comput. Phys..
[8] J. Butcher. The effective order of Runge-Kutta methods , 1969 .
[9] G. Rowlands. A numerical algorithm for Hamiltonian systems , 1991 .
[10] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[11] Jesús María Sanz-Serna,et al. Numerical Integrators for the Hybrid Monte Carlo Method , 2014, SIAM J. Sci. Comput..
[12] Tore Selland Kleppe,et al. On the application of improved symplectic integrators in Hamiltonian Monte Carlo , 2018, Commun. Stat. Simul. Comput..
[13] J. Rosenthal,et al. Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .
[14] Richard J. Boys,et al. Discussion to "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by Girolami and Calderhead , 2011 .
[15] Jesús María Sanz-Serna,et al. Multi-stage splitting integrators for sampling with modified Hamiltonian Monte Carlo methods , 2018, J. Comput. Phys..
[16] Fernando Casas,et al. Symplectic Integration with Processing: A General Study , 1999, SIAM J. Sci. Comput..
[17] M. Aleardi,et al. Hamiltonian Monte Carlo algorithms for target- and interval-oriented amplitude versus angle inversions , 2020 .
[18] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[19] Jesús María Sanz-Serna,et al. HMC: Reducing the number of rejections by not using leapfrog and some results on the acceptance rate , 2021, J. Comput. Phys..
[20] J. M. Sanz-Serna,et al. Markov Chain Monte Carlo and Numerical Differential Equations , 2014 .
[21] J. M. Sanz-Serna,et al. Adaptive Splitting Integrators for Enhancing Sampling Efficiency of Modified Hamiltonian Monte Carlo Methods in Molecular Simulation. , 2017, Langmuir : the ACS journal of surfaces and colloids.
[22] Mari Paz Calvo,et al. The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..
[23] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[24] Masatoshi Imada,et al. Monte Carlo Calculation of Quantum Systems. II. Higher Order Correction , 1984 .
[25] Siu A. Chin,et al. Symplectic integrators from composite operator factorizations , 1997 .
[26] David E. Shaw,et al. Computationally efficient molecular dynamics integrators with improved sampling accuracy , 2012 .
[27] M. A. Clark,et al. Shadow Hamiltonians, Poisson brackets, and gauge theories , 2013 .
[28] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[29] Fernando Casas,et al. On the necessity of negative coefficients for operator splitting schemes of order higher than two , 2005 .
[30] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[31] Fernando Casas,et al. A Concise Introduction to Geometric Numerical Integration , 2016 .
[32] Jesús María Sanz-Serna,et al. Adaptive multi-stage integrators for optimal energy conservation in molecular simulations , 2015, J. Comput. Phys..
[33] Jesús María Sanz-Serna,et al. Geometric integrators and the Hamiltonian Monte Carlo method , 2017, Acta Numerica.
[34] G. Stoltz,et al. THEORETICAL AND NUMERICAL COMPARISON OF SOME SAMPLING METHODS FOR MOLECULAR DYNAMICS , 2007 .
[35] Igor P. Omelyan,et al. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .