Symmetrically processed splitting integrators for enhanced Hamiltonian Monte Carlo sampling

We construct integrators to be used in Hamiltonian (or Hybrid) Monte Carlo sampling. The new integrators are easily implementable and, for a given computational budget, may deliver five times as many accepted proposals as standard leapfrog/Verlet without impairing in any way the quality of the samples. They are based on a suitable modification of the processing technique first introduced by J.C. Butcher. The idea of modified processing may also be useful for other purposes, like the construction of high-order splitting integrators with positive coefficients.

[1]  Adrian Sandu,et al.  A Hybrid Monte Carlo Sampling Filter for Non-Gaussian Data Assimilation , 2015 .

[2]  F. Kitaura,et al.  Higher order Hamiltonian Monte Carlo sampling for cosmological large-scale structure analysis , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[4]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[5]  D. Dunson,et al.  Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods , 2017, 1705.08510.

[6]  M. A. López-Marcos,et al.  Explicit Symplectic Integrators Using Hessian-Vector Products , 1997, SIAM J. Sci. Comput..

[7]  Jesús María Sanz-Serna,et al.  Palindromic 3-stage splitting integrators, a roadmap , 2017, J. Comput. Phys..

[8]  J. Butcher The effective order of Runge-Kutta methods , 1969 .

[9]  G. Rowlands A numerical algorithm for Hamiltonian systems , 1991 .

[10]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[11]  Jesús María Sanz-Serna,et al.  Numerical Integrators for the Hybrid Monte Carlo Method , 2014, SIAM J. Sci. Comput..

[12]  Tore Selland Kleppe,et al.  On the application of improved symplectic integrators in Hamiltonian Monte Carlo , 2018, Commun. Stat. Simul. Comput..

[13]  J. Rosenthal,et al.  Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .

[14]  Richard J. Boys,et al.  Discussion to "Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by Girolami and Calderhead , 2011 .

[15]  Jesús María Sanz-Serna,et al.  Multi-stage splitting integrators for sampling with modified Hamiltonian Monte Carlo methods , 2018, J. Comput. Phys..

[16]  Fernando Casas,et al.  Symplectic Integration with Processing: A General Study , 1999, SIAM J. Sci. Comput..

[17]  M. Aleardi,et al.  Hamiltonian Monte Carlo algorithms for target- and interval-oriented amplitude versus angle inversions , 2020 .

[18]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[19]  Jesús María Sanz-Serna,et al.  HMC: Reducing the number of rejections by not using leapfrog and some results on the acceptance rate , 2021, J. Comput. Phys..

[20]  J. M. Sanz-Serna,et al.  Markov Chain Monte Carlo and Numerical Differential Equations , 2014 .

[21]  J. M. Sanz-Serna,et al.  Adaptive Splitting Integrators for Enhancing Sampling Efficiency of Modified Hamiltonian Monte Carlo Methods in Molecular Simulation. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[22]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[23]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[24]  Masatoshi Imada,et al.  Monte Carlo Calculation of Quantum Systems. II. Higher Order Correction , 1984 .

[25]  Siu A. Chin,et al.  Symplectic integrators from composite operator factorizations , 1997 .

[26]  David E. Shaw,et al.  Computationally efficient molecular dynamics integrators with improved sampling accuracy , 2012 .

[27]  M. A. Clark,et al.  Shadow Hamiltonians, Poisson brackets, and gauge theories , 2013 .

[28]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[29]  Fernando Casas,et al.  On the necessity of negative coefficients for operator splitting schemes of order higher than two , 2005 .

[30]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[31]  Fernando Casas,et al.  A Concise Introduction to Geometric Numerical Integration , 2016 .

[32]  Jesús María Sanz-Serna,et al.  Adaptive multi-stage integrators for optimal energy conservation in molecular simulations , 2015, J. Comput. Phys..

[33]  Jesús María Sanz-Serna,et al.  Geometric integrators and the Hamiltonian Monte Carlo method , 2017, Acta Numerica.

[34]  G. Stoltz,et al.  THEORETICAL AND NUMERICAL COMPARISON OF SOME SAMPLING METHODS FOR MOLECULAR DYNAMICS , 2007 .

[35]  Igor P. Omelyan,et al.  Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations , 2003 .