A modular string averaging procedure for solving the common fixed point problem for quasi-nonexpansive mappings in Hilbert space

[1]  Andrzej Cegielski,et al.  Application of Quasi-Nonexpansive Operators to an Iterative Method for Variational Inequality , 2015, SIAM J. Optim..

[2]  Touraj Nikazad,et al.  Perturbation-Resilient Iterative Methods with an Infinite Pool of Mappings , 2015, SIAM J. Numer. Anal..

[3]  Andrzej Cegielski,et al.  Projection methods: an annotated bibliography of books and reviews , 2014, 1406.6143.

[4]  Heinz H. Bauschke,et al.  On Subgradient Projectors , 2014, SIAM J. Optim..

[5]  Heinz H. Bauschke,et al.  Linear and strong convergence of algorithms involving averaged nonexpansive operators , 2014, Journal of Mathematical Analysis and Applications.

[6]  Jonathan M. Borwein,et al.  The Cyclic Douglas-Rachford Method for Inconsistent Feasibility Problems , 2013, 1310.2195.

[7]  Yair Censor,et al.  String-averaging projected subgradient methods for constrained minimization , 2013, Optim. Methods Softw..

[8]  Matthew K. Tam,et al.  A Cyclic Douglas–Rachford Iteration Scheme , 2013, Journal of Optimization Theory and Applications.

[9]  A. Cegielski,et al.  Methods for Variational Inequality Problem Over the Intersection of Fixed Point Sets of Quasi-Nonexpansive Operators , 2013 .

[10]  Heinz H. Bauschke,et al.  A projection method for approximating fixed points of quasi nonexpansive mappings without the usual demiclosedness condition , 2012, 1211.1639.

[11]  A. Cegielski Iterative Methods for Fixed Point Problems in Hilbert Spaces , 2012 .

[12]  Constantin Popa,et al.  Projection Algorithms - Classical Results and Developments , 2012 .

[13]  Yair Censor,et al.  Convergence and perturbation resilience of dynamic string-averaging projection methods , 2012, Computational Optimization and Applications.

[14]  M. Raydan,et al.  Alternating Projection Methods , 2011 .

[15]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[16]  Ran Davidi,et al.  Perturbation resilience and superiorization of iterative algorithms , 2010, Inverse problems.

[17]  Yair Censor,et al.  On the string averaging method for sparse common fixed-point problems , 2009, Int. Trans. Oper. Res..

[18]  Simeon Reich,et al.  Block-iterative algorithms for solving convex feasibility problems in Hilbert and in Banach spaces , 2008 .

[19]  Dan Butnariu,et al.  Stable Convergence Theorems for Infinite Products and Powers of Nonexpansive Mappings , 2008 .

[20]  D. Butnariu,et al.  Stable Convergence Behavior Under Summable Perturbations of a Class of Projection Methods for Convex Feasibility and Optimization Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[21]  Charles L. Byrne,et al.  Applied Iterative Methods , 2007 .

[22]  Gilbert Crombez,et al.  A Hierarchical Presentation of Operators with Fixed Points on Hilbert Spaces , 2006 .

[23]  I. Yamada,et al.  Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings , 2005 .

[24]  D. R. Luke Relaxed averaged alternating reflections for diffraction imaging , 2004, math/0405208.

[25]  Heinz H. Bauschke,et al.  Projection and proximal point methods: convergence results and counterexamples , 2004 .

[26]  Yair Censor,et al.  Convergence of String-Averaging Projection Schemes for Inconsistent Convex Feasibility Problems , 2003, Optim. Methods Softw..

[27]  Heinz H. Bauschke,et al.  A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..

[28]  P. L. Combettes,et al.  Hilbertian convex feasibility problem: Convergence of projection methods , 1997 .

[29]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[30]  Heinz H. Bauschke,et al.  A norm convergence result on random products of relaxed projections in Hilbert space , 1995 .

[31]  V. V. Vasin,et al.  Ill-posed problems with a priori information , 1995 .

[32]  Yair Censor,et al.  Strong convergence of almost simultaneous block-iterative projection methods in Hilbert spaces , 1994 .

[33]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[34]  J. Zowe,et al.  Relaxed outer projections, weighted averages and convex feasibility , 1990 .

[35]  Y. Censor,et al.  Block-iterative projection methods for parallel computation of solutions to convex feasibility problems , 1989 .

[36]  Lúcio T. Santos,et al.  A parallel subgradient projections method for the convex feasibility problem , 1987 .

[37]  Alfredo N. Iusem,et al.  Convergence results for an accelerated nonlinear cimmino algorithm , 1986 .

[38]  Simeon Reich,et al.  A limit theorem for projections , 1983 .

[39]  Yair Censor,et al.  Cyclic subgradient projections , 1982, Math. Program..

[40]  Ronald E. Bruck Random products of contractions in metric and Banach Spaces , 1982 .

[41]  Y. Censor Row-Action Methods for Huge and Sparse Systems and Their Applications , 1981 .

[42]  J. Lindenstrauss,et al.  An example concerning fixed points , 1975 .

[43]  Ronald E. Bruck Nonexpansive projections on subsets of Banach spaces. , 1973 .

[44]  F. Browder,et al.  Construction of fixed points of nonlinear mappings in Hilbert space , 1967 .

[45]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[46]  F. Browder Convergence theorems for sequences of nonlinear operators in Banach spaces , 1967 .

[47]  L. Fejér Über die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen , 1922 .

[48]  Andrzej Cegielskiand Rafa L Zalas PROPERTIES OF A CLASS OF APPROXIMATELY SHRINKING OPERATORS AND THEIR APPLICATIONS , 2014 .

[49]  Rafał Zalas Variational inequalities for fixed point problems of quasi-nonexpansive operators 1 by , 2014 .

[50]  Zielona Góra Variational inequalities for fixed point problems of quasi-nonexpansive operators 1 , 2014 .

[51]  Andrzej Cegielski,et al.  Opial-Type Theorems and the Common Fixed Point Problem , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[52]  Y. Censor,et al.  Sparse string-averaging and split common fixed points , 2008 .

[53]  Gilbert Crombez,et al.  Finding common fixed points of strict paracontractions by averaging strings of sequential iterations. , 2002 .

[54]  D. Schott Ball intersection model for Fejér zones of convex closed sets , 2001 .

[55]  P. L. Combettes,et al.  Quasi-Fejérian Analysis of Some Optimization Algorithms , 2001 .

[56]  Yair Censor,et al.  Averaging Strings of Sequential Iterations for Convex Feasibility Problems , 2001 .

[57]  S. Reich,et al.  Attracting Mappings in Banach and Hyperbolic Spaces , 2001 .

[58]  Andrzej Stachurski,et al.  Parallel Optimization: Theory, Algorithms and Applications , 2000, Parallel Distributed Comput. Pract..

[59]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[60]  Guy Pierra,et al.  Decomposition through formalization in a product space , 1984, Math. Program..

[61]  Y. Censor Iterative Methods for the Convex Feasibility Problem , 1984 .

[62]  A. Auslender Optimisation : méthodes numériques , 1976 .

[63]  W. G. Dotson,et al.  On the Mann iterative process , 1970 .

[64]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[65]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[66]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[67]  L. R. ?ber die Lage der Nullstellen von Polynomen, die aus Minimumforderungen gewisser Art entspringen , 2022 .